当前位置: 首页 > news >正文

(笔记四)利用opencv识别标记视频中的目标

预操作:

通过cv2将视频的某一帧图片转为HSV模式,并通过鼠标获取对应区域目标的HSV值,用于后续的目标识别阈值区间的选取

在这里插入图片描述``

img = cv.imread(r"D:\data\123.png")
img = cv.cvtColor(img, cv.COLOR_BGR2HSV)
plt.figure(1), plt.imshow(img)
plt.show()

(1)将视频中识别的目标掩膜成红色

end_frame[mask > 0] = [0, 0, 255]

在这里插入图片描述

(2)利用cv库读取显示原始视频

在这里插入图片描述

(3)在HSV阈值分割识别的视频目标

hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
# 定义分割黑色的上下区间,其代表的是目标物体的hsv空间内的最小值和最大值
low = np.array([60, 60, 60])
up = np.array([130, 120, 120])
mask = cv.inRange(hsv, low, up)        

在这里插入图片描述

(4)按位与运算之后的视频目标(目标的真实色彩)

# 进行按位运算,白色的变为frame原来的颜色,其他还是黑色
res = cv.bitwise_and(frame, frame, mask=mask)

在这里插入图片描述

(5)主代码(已经给出解释)

#!/usr/bin/env python
# -*- coding:utf-8 -*-
"""
@author: LIFEI
@time: 2023/8/29 14:39 
@file: test4.py
@project: pythonProject
@describe: TODO
@# -------------------------------------------------(one)----------------------------------------------
@# -------------------------------------------------(two)----------------------------------------------
"""# -------------------------------------------------(one)----------------------------------------------
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt# img = cv.imread(r"D:\data\123.png")
# img = cv.cvtColor(img, cv.COLOR_BGR2HSV)
# plt.figure(1), plt.imshow(img)
# plt.show()def identify(path, point):# 创建一个video基类cap = cv.VideoCapture(path)# 当cap被打开时开始循环while cap.isOpened():#  读取视频ret, frame = cap.read()# 拷贝图像,赋值给end_frameend_frame = np.copy(frame)# 将视频的BGR空间转换为HSV空间hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV)# 定义分割黑色的上下区间,其代表的是目标物体的hsv空间内的最小值和最大值low = np.array([60, 60, 60])up = np.array([130, 120, 120])# 类似与阈值分割,就是将上述的区间类的物体改成白色,其他改为黑色mask = cv.inRange(hsv, low, up)# 进行按位运算,白色的变为frame原来的颜色,其他还是黑色res = cv.bitwise_and(frame, frame, mask=mask)# 将end_frame中的mask白色区域变成红色end_frame[mask > 0] = [0, 0, 255]# 判断帧率是否存在,若是不存在直接退出if not ret:break# 判断输出if point == 1:cv.imshow("frame", frame)elif point == 2:cv.imshow("mask", mask)elif point == 3:cv.imshow("avi", res)else:cv.imshow("end_frame", end_frame)# 这里理解为视频的快慢,1表示原始速度,越大越慢,按‘q’退出显示if cv.waitKey(15) & 0xFF == ord('q'):breakcv.waitKey(0)# 释放cap.release()cv.destroyAllWindows()if __name__ == '__main__':# 视频的路径filepath = r"D:\data\plane.avi"# 访问输入的数值,后续循环要用value = input('请输入一个数字(1表示ori,2表示mask,3表示res,4表示end_frame):')# 转为整型value = int(value)# 开始操作identify(filepath, value)# -------------------------------------------------(two) - -------------------------------------------

相关文章:

(笔记四)利用opencv识别标记视频中的目标

预操作: 通过cv2将视频的某一帧图片转为HSV模式,并通过鼠标获取对应区域目标的HSV值,用于后续的目标识别阈值区间的选取 img cv.imread(r"D:\data\123.png") img cv.cvtColor(img, cv.COLOR_BGR2HSV) plt.figure(1), plt.imshow…...

一、计算机硬件选购

计算机硬件选购 一、设备选购1.1 I/O设备1.2 机箱1.3 主板1.3.1 主板芯片组的命名方式1.3.2 主板版型1.3.3 Z790-a(DDR5)主板参数 1.4 CPU1.5 硬盘1.6 显卡1.7 内存条1.8 散热器(水冷)1.9 电源、风扇、网线、插线板1.9.1 电源1.9.2 风扇1.9.3 网线1.9.4 …...

Dockerfile制作LAMP环境镜像

文章目录 使用Dockerfile制作LAMP环境镜像编写Dockerfile不修改默认页面修改默认页面 Start Script目录结构及文件登录私有仓库给镜像打标签上传镜像页面检查检测镜像可用性 使用Dockerfile制作LAMP环境镜像 编写Dockerfile 不修改默认页面 FROM centos:7 MAINTAINER "…...

暴力递归转动态规划(二)

上一篇已经简单的介绍了暴力递归如何转动态规划,如果在暴力递归的过程中发现子过程中有重复解的情况,则证明这个暴力递归可以转化成动态规划。 这篇帖子会继续暴力递归转化动态规划的练习,这道题有点难度。 题目 给定一个整型数组arr[]&…...

debian apt error: Package ‘xxx‘ has no installation candidate

新的debian虚拟机可能会出现这个问题。 修改apt的source.list,位于/etc/apt/source.list,添加两行: deb http://deb.debian.org/debian bullseye main deb-src http://deb.debian.org/debian bullseye main执行: sudo apt-get u…...

c#设计模式-结构型模式 之 外观模式

概述 外观模式(Facade Pattern)又名门面模式,隐藏系统的复杂性,并向客户端提供了一个客户端可以访问系统的接口。这种类型的设计模式属于结构型模式,它向现有的系统添加一个接口,来隐藏系统的复杂性。该模式…...

Focal Loss-解决样本标签分布不平衡问题

文章目录 背景交叉熵损失函数平衡交叉熵函数 Focal Loss损失函数Focal Loss vs Balanced Cross EntropyWhy does Focal Loss work? 针对VidHOI数据集Reference 背景 Focal Loss由何凯明提出,最初用于图像领域解决数据不平衡造成的模型性能问题。 交叉熵损失函数 …...

运算符(个人学习笔记黑马学习)

算数运算符 加减乘除 #include <iostream> using namespace std;int main() {int a1 10;int a2 20;cout << a1 a2 << endl;cout << a1 - a2 << endl;cout << a1 * a2 << endl;cout << a1 / a2 << endl;/*double a3 …...

开源与专有软件:比较与对比

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…...

openResty+lua+redis实现接口访问频率限制

openResty简介&#xff1a; OpenResty 是一个基于 Nginx 与 Lua 的高性能 Web 平台&#xff0c;其内部集成了大量精良的 Lua 库、第三方模块以及大多数的依赖项。用于方便地搭建能够处理超高并发、扩展性极高的动态 Web 应用、Web 服务和动态网关。 OpenResty 通过汇聚各种设…...

自动化测试(三):接口自动化pytest测试框架

文章目录 1. 接口自动化的实现2. 知识要点及实践2.1 requests.post传递的参数本质2.2 pytest单元测试框架2.2.1 pytest框架简介2.2.2 pytest装饰器2.2.3 断言、allure测试报告2.2.4 接口关联、封装改进YAML动态传参&#xff08;热加载&#xff09; 2.3 pytest接口封装&#xff…...

Python --datetime模块

目录 1&#xff0c; 获取datetime时间 2&#xff0c; datetime与timestamp转换 2-1&#xff0c; datetime转timestamp 2-2&#xff0c; timestamp转datetime 3&#xff0c; str格式与datetime转换 3-1&#xff0c; datetime转str格式 3-2&#xff0c; str格式转datetime…...

顺序表链表OJ题(3)——【数据结构】

W...Y的主页 &#x1f60a; 代码仓库分享 &#x1f495; 前言&#xff1a; 今天是链表顺序表OJ练习题最后一次分享&#xff0c;每一次的分享题目的难度也再有所提高&#xff0c;但是我相信大家都是非常机智的&#xff0c;希望看到博主文章能学到东西的可以一键三连关注一下博主…...

【Azure】Virtual Hub vWAN

虚拟 WAN 文档 Azure 虚拟 WAN 是一个网络服务&#xff0c;其中整合了多种网络、安全和路由功能&#xff0c;提供单一操作界面。 我们主要讨论两种连接情况&#xff1a; 通过一个 vWAN 来连接不通的 vNET 和本地网络。以下是一个扩展的拓扑 结合 vhub&#xff0c;可以把两个中…...

React Navigation 使用导航

在 Web 浏览器中&#xff0c;您可以使用锚标记链接到不同的页面。当用户单击链接时&#xff0c;URL 会被推送到浏览器历史记录堆栈中。当用户按下后退按钮时&#xff0c;浏览器会从历史堆栈顶部弹出该项目&#xff0c;因此活动页面现在是以前访问过的页面。React Native 不像 W…...

双指针算法,基础算法实践,基本的算法的思想,双指针算法的实现

一&#xff0c;定义 双指针算法是一种常用于解决数组和链表问题的算法技巧。它的核心思想是使用两个指针在数据结构中按照一定的规则移动&#xff0c;从而达到快速搜索或处理数据的目的。这个技巧通常用于优化算法&#xff0c;降低时间复杂度&#xff0c;提高程序的执行效率。…...

idea http request无法识别环境变量

问题描述 创建了环境变量文件 http-client.env.json&#xff0c;然后在*.http 文件中引用环境变量&#xff0c;运行 HTTP 请求无法读取环境变量文件中定义的变量。 事故现场 IDEA 版本&#xff1a;2020.2 2021.2 解决步骤 2020.2 版本环境变量无法读取 2021.2 版本从 2020.…...

性能测试常见的测试指标

一、什么是性能测试 先看下百度百科对它的定义 性能测试是通过自动化的测试工具模拟多种正常、峰值以及异常负载条件来对系统的各项性能指标进行测试。我们可以认为性能测试是&#xff1a;通过在测试环境下对系统或构件的性能进行探测&#xff0c;用以验证在生产环境下系统性能…...

并发 04(Callable,CountDownLatch)详细讲解

并发 Callable 1 可以返回值 2可以抛出异常 泛型指的是返回值的类型 public class Send {public static void main(String[] args) {//怎么启动Callable//new Thread().start();Aaa threadnew Aaa();FutureTask futureTasknew FutureTask(thread);new Thread(futureTask,&qu…...

Json路径表达式

原json路径 {"timeStamp": "20220801110008","transIDO": "6ba9088c981b407fb38feasdf09","version": "1.0.0","signMethod": "md5","content": "{\"companyName\&quo…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

Day131 | 灵神 | 回溯算法 | 子集型 子集

Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a; 笔者写过很多次这道题了&#xff0c;不想写题解了&#xff0c;大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

剑指offer20_链表中环的入口节点

链表中环的入口节点 给定一个链表&#xff0c;若其中包含环&#xff0c;则输出环的入口节点。 若其中不包含环&#xff0c;则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

EtherNet/IP转DeviceNet协议网关详解

一&#xff0c;设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络&#xff0c;本网关连接到EtherNet/IP总线中做为从站使用&#xff0c;连接到DeviceNet总线中做为从站使用。 在自动…...

3-11单元格区域边界定位(End属性)学习笔记

返回一个Range 对象&#xff0c;只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意&#xff1a;它移动的位置必须是相连的有内容的单元格…...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指&#xff1a;同样大小的样本 **&#xff08;同样大小的数据&#xff09;**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

Python Ovito统计金刚石结构数量

大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...