基于Qt5开发图形界面——WiringPi调用Linux单板电脑IO
Qt5——WiringPi
- Qt5
- WiringPi
- 示例
- 教程
Qt5
Qt是一种跨平台的应用程序开发框架。它被广泛应用于图形用户界面(GUI)开发,可以用于构建桌面应用程序、移动应用程序和嵌入式应用程序。Qt提供了丰富的功能和工具,使开发人员可以快速、高效地构建各种类型的应用程序。
下面是一些Qt的主要特点和优势:
跨平台性:Qt可以在多个操作系统上运行,包括Windows、MacOS、Linux和嵌入式系统等。这意味着可以使用相同的代码库开发应用程序,并在不同平台上部署和运行。
强大的图形用户界面:Qt提供了一套丰富的UI控件和布局管理器,使开发人员可以轻松创建各种各样的用户界面。它还支持自定义样式和主题,以满足不同应用程序的设计需求。
多语言支持:Qt支持多种编程语言,包括C++、Python、JavaScript和QML。可以根据自己的喜好和项目需求选择适合的编程语言。
数据库集成:Qt提供了对各种数据库的支持,包括SQLite、MySQL和PostgreSQL等。这使得开发人员可以轻松地将应用程序与后端。
Qt 5.15 https://doc.qt.io/qt-5/classes.html
WiringPi
WiringPi是一套用于树莓派(Raspberry Pi)的C编程库,它提供了方便使用GPIO(通用输入/输出)的函数和工具。GPIO是连接树莓派与其他电子设备的接口,可以用于读取传感器的数据、控制LED灯、操作电机等等。
WiringPi库使得在树莓派上进行GPIO编程变得更加简单和方便。它包含了一系列函数,可以直接通过编程来配置和控制GPIO引脚的状态,比如设置引脚为输入或输出模式,读取或写入引脚的电平状态,以及注册中断等。
此外,WiringPi还提供了一些实用工具,比如gpio命令行程序,可以通过命令行方式来控制GPIO引脚的状态,而无需编写代码。这对于快速测试和调试GPIO功能非常有帮助。
总之,WiringPi是一个强大而实用的C编程库,为树莓派提供了简单、灵活和可靠的接口,使得GPIO编程变得更加容易。
某个人博客总结文档 https://www.cnblogs.com/lulipro/p/5992172.html
WiringPi2 https://www.rubydoc.info/gems/wiringpi2/2.0.1/WiringPi/GPIO
示例
pushButton点灯
LIBS += -lwiringPi
头文件添加
#include "wiringPi
"
#include "widget.h"
#include "ui_widget.h"Widget::Widget(QWidget *parent) :QWidget(parent),ui(new Ui::Widget)
{ui->setupUi(this);wiringPiSetup();pinMode(2,OUTPUT);
}Widget::~Widget()
{delete ui;
}void Widget::on_pushButton_clicked()
{static char io = 0;if(io == 0){digitalWrite(2,HIGH);io = 1;ui->pushButton->setText("关灯");}else{digitalWrite(2,LOW);io = 0;ui->pushButton->setText("开灯");}
}
教程
【速学Linux】手把手教你学嵌入式Linux Qt5(C++)开发
相关文章:

基于Qt5开发图形界面——WiringPi调用Linux单板电脑IO
Qt5——WiringPi Qt5WiringPi示例教程 Qt5 Qt是一种跨平台的应用程序开发框架。它被广泛应用于图形用户界面(GUI)开发,可以用于构建桌面应用程序、移动应用程序和嵌入式应用程序。Qt提供了丰富的功能和工具,使开发人员可以快速、高…...

【MySQL】组合查询
目录 一、组合查询 1.创建组合查询 2.union规则 3.包含或取消重复的行 4.对组合查询结果排序 一、组合查询 多数SQL查询都只包含从一个或多个表中返回数据的单条SELECT语句。MySQL也允许执行多个查询(多条SELECT语句),并将结果作为单个查…...
ChatGPT:引领人机交互的未来
前言 在信息技术飞速发展的时代,人机交互的方式也在不断演进。技术对人们生活和工作的影响。本文将带您深入探讨一款引领人机交互未来的人工智能模型——ChatGPT。 ChatGPT简介 ChatGPT 是一种由开放AI(OpenAI)开发的人工智能模型…...

【算法】经典的八大排序算法
点击链接 可视化排序 动态演示各个排序算法来加深理解,大致如下 一,冒泡排序(Bubble Sort) 原理 冒泡排序(Bubble Sort)是一种简单的排序算法,它通过多次比较和交换相邻元素的方式,将…...

防溺水预警识别系统算法
防溺水预警识别系统旨在通过opencvpython网络模型深度学习算法,防溺水预警识别系统算法实时监测河道环境,对学生等违规下水游泳等危险行为进行预警和提醒。Python是一种由Guido van Rossum开发的通用编程语言,它很快就变得非常流行࿰…...
Redis 的整合 Jedis 使用
大家好 , 我是苏麟 , 今天带来 Jedis 的使用 . Jedis的官网地址: GitHub - redis/jedis: Redis Java client 引入依赖 <!--jedis--> <dependency><groupId>redis.clients</groupId><artifactId>jedis</artifactId><version…...

Mainline Linux 和 U-Boot编译
By Toradex胡珊逢 Toradex 自从 Linux BSP v6 开始在使用 32位处理器的 Arm 模块如 iMX6、iMX6ULL、iMX7 上提供 mainline/upstream kernel ,部分 64位处理器模块如 Verdin iMX8M Mini/Plus 也提供实验性支持。文章将以季度发布版本 Linux BSP V6.3.0 为例介绍如何下…...

Mycat教程+面试+linux搭建
目录 一 MyCAT介绍 二 常见的面试题总结 三 linux下搭建Mycat 一 MyCAT介绍 1.1. 什么是MyCAT? 简单的说,MyCAT就是: 一个彻底开源的,面向企业应用开发的“大数据库集群” 支持事务、ACID、可以替代Mysql的加强版数据库 一个可…...
基于工作过程的高职计算机网络技术专业课程体系构建策略
行业人才需求分析高职教育是面向地方行业培养技能型、应用型人才,因此, 在课程体系的构建上要走社会调研、构建岗位群、构建专业模块及课程设置“四步 曲”。即通过社会行业需求调查研究,构建岗位群,设置相应的专业模块…...

(笔记四)利用opencv识别标记视频中的目标
预操作: 通过cv2将视频的某一帧图片转为HSV模式,并通过鼠标获取对应区域目标的HSV值,用于后续的目标识别阈值区间的选取 img cv.imread(r"D:\data\123.png") img cv.cvtColor(img, cv.COLOR_BGR2HSV) plt.figure(1), plt.imshow…...

一、计算机硬件选购
计算机硬件选购 一、设备选购1.1 I/O设备1.2 机箱1.3 主板1.3.1 主板芯片组的命名方式1.3.2 主板版型1.3.3 Z790-a(DDR5)主板参数 1.4 CPU1.5 硬盘1.6 显卡1.7 内存条1.8 散热器(水冷)1.9 电源、风扇、网线、插线板1.9.1 电源1.9.2 风扇1.9.3 网线1.9.4 …...

Dockerfile制作LAMP环境镜像
文章目录 使用Dockerfile制作LAMP环境镜像编写Dockerfile不修改默认页面修改默认页面 Start Script目录结构及文件登录私有仓库给镜像打标签上传镜像页面检查检测镜像可用性 使用Dockerfile制作LAMP环境镜像 编写Dockerfile 不修改默认页面 FROM centos:7 MAINTAINER "…...

暴力递归转动态规划(二)
上一篇已经简单的介绍了暴力递归如何转动态规划,如果在暴力递归的过程中发现子过程中有重复解的情况,则证明这个暴力递归可以转化成动态规划。 这篇帖子会继续暴力递归转化动态规划的练习,这道题有点难度。 题目 给定一个整型数组arr[]&…...
debian apt error: Package ‘xxx‘ has no installation candidate
新的debian虚拟机可能会出现这个问题。 修改apt的source.list,位于/etc/apt/source.list,添加两行: deb http://deb.debian.org/debian bullseye main deb-src http://deb.debian.org/debian bullseye main执行: sudo apt-get u…...

c#设计模式-结构型模式 之 外观模式
概述 外观模式(Facade Pattern)又名门面模式,隐藏系统的复杂性,并向客户端提供了一个客户端可以访问系统的接口。这种类型的设计模式属于结构型模式,它向现有的系统添加一个接口,来隐藏系统的复杂性。该模式…...

Focal Loss-解决样本标签分布不平衡问题
文章目录 背景交叉熵损失函数平衡交叉熵函数 Focal Loss损失函数Focal Loss vs Balanced Cross EntropyWhy does Focal Loss work? 针对VidHOI数据集Reference 背景 Focal Loss由何凯明提出,最初用于图像领域解决数据不平衡造成的模型性能问题。 交叉熵损失函数 …...

运算符(个人学习笔记黑马学习)
算数运算符 加减乘除 #include <iostream> using namespace std;int main() {int a1 10;int a2 20;cout << a1 a2 << endl;cout << a1 - a2 << endl;cout << a1 * a2 << endl;cout << a1 / a2 << endl;/*double a3 …...

开源与专有软件:比较与对比
🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 &a…...
openResty+lua+redis实现接口访问频率限制
openResty简介: OpenResty 是一个基于 Nginx 与 Lua 的高性能 Web 平台,其内部集成了大量精良的 Lua 库、第三方模块以及大多数的依赖项。用于方便地搭建能够处理超高并发、扩展性极高的动态 Web 应用、Web 服务和动态网关。 OpenResty 通过汇聚各种设…...

自动化测试(三):接口自动化pytest测试框架
文章目录 1. 接口自动化的实现2. 知识要点及实践2.1 requests.post传递的参数本质2.2 pytest单元测试框架2.2.1 pytest框架简介2.2.2 pytest装饰器2.2.3 断言、allure测试报告2.2.4 接口关联、封装改进YAML动态传参(热加载) 2.3 pytest接口封装ÿ…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

【入坑系列】TiDB 强制索引在不同库下不生效问题
文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
CSS | transition 和 transform的用处和区别
省流总结: transform用于变换/变形,transition是动画控制器 transform 用来对元素进行变形,常见的操作如下,它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...
django blank 与 null的区别
1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是,要注意以下几点: Django的表单验证与null无关:null参数控制的是数据库层面字段是否可以为NULL,而blank参数控制的是Django表单验证时字…...
智能职业发展系统:AI驱动的职业规划平台技术解析
智能职业发展系统:AI驱动的职业规划平台技术解析 引言:数字时代的职业革命 在当今瞬息万变的就业市场中,传统的职业规划方法已无法满足个人和企业的需求。据统计,全球每年有超过2亿人面临职业转型困境,而企业也因此遭…...
32单片机——基本定时器
STM32F103有众多的定时器,其中包括2个基本定时器(TIM6和TIM7)、4个通用定时器(TIM2~TIM5)、2个高级控制定时器(TIM1和TIM8),这些定时器彼此完全独立,不共享任何资源 1、定…...
手动给中文分词和 直接用神经网络RNN做有什么区别
手动分词和基于神经网络(如 RNN)的自动分词在原理、实现方式和效果上有显著差异,以下是核心对比: 1. 实现原理对比 对比维度手动分词(规则 / 词典驱动)神经网络 RNN 分词(数据驱动)…...

未授权访问事件频发,我们应当如何应对?
在当下,数据已成为企业和组织的核心资产,是推动业务发展、决策制定以及创新的关键驱动力。然而,未授权访问这一隐匿的安全威胁,正如同高悬的达摩克利斯之剑,时刻威胁着数据的安全,一旦触发,便可…...

第2篇:BLE 广播与扫描机制详解
本文是《BLE 协议从入门到专家》专栏第二篇,专注于解析 BLE 广播(Advertising)与扫描(Scanning)机制。我们将从协议层结构、广播包格式、设备发现流程、控制器行为、开发者 API、广播冲突与多设备调度等方面,全面拆解这一 BLE 最基础也是最关键的通信机制。 一、什么是 B…...