当前位置: 首页 > news >正文

分布式系统与微服务的区别是什么?

分布式系统和微服务是两个相关但不同的概念,它们都是在构建复杂的软件应用时使用的架构思想。

  1. 分布式系统: 分布式系统是指由多个独立的计算机或服务器通过网络连接共同工作,协同完成一个任务或提供一个服务。在分布式系统中,各个计算机节点可以分担任务的负荷,共同完成复杂的工作。分布式系统的目标是提高系统的可靠性、扩展性和性能。典型的分布式系统包括数据库集群、分布式文件系统、分布式计算等。

  2. 微服务: 微服务是一种软件架构风格,它将一个应用程序划分为多个小型、独立的服务,每个服务都专注于完成特定的业务功能。这些服务可以独立部署、扩展和维护,并且可以使用不同的编程语言和技术栈。微服务架构强调服务的解耦和独立性,以及通过轻量级通信机制(如HTTP或消息队列)实现服务间的协作。

区别:

  • 规模和领域: 分布式系统是一个范围更广泛的概念,可以包含任何由多台计算机组成的系统,不仅限于软件应用。而微服务是一种软件架构风格,专注于应用程序的拆分和组织。

  • 粒度: 分布式系统的粒度可以很大,可以是大型的集群、数据库系统等。而微服务的粒度较小,每个微服务通常只专注于一个特定的业务功能。

  • 独立性: 微服务强调每个服务的独立性,每个微服务都可以独立开发、部署和维护。分布式系统中的各个节点也可以是独立的,但不一定需要遵循微服务的粒度和独立性原则。

  • 通信方式: 微服务之间通常通过轻量级的通信方式(如HTTP、REST API、消息队列等)进行通信。分布式系统的通信方式可以更加灵活,包括远程过程调用、消息传递、数据同步等。

综上所述,分布式系统是一个更大的范畴,而微服务是一种特定的软件架构风格,用于构建分布式应用程序。

相关文章:

分布式系统与微服务的区别是什么?

分布式系统和微服务是两个相关但不同的概念,它们都是在构建复杂的软件应用时使用的架构思想。 分布式系统: 分布式系统是指由多个独立的计算机或服务器通过网络连接共同工作,协同完成一个任务或提供一个服务。在分布式系统中,各个…...

python:用python构建一个物联网平台

要使用Python构建物联网平台,您需要考虑以下步骤: 确定平台的基本要求和功能 首先,您需要明确您将要构建的平台的功能和特点。例如,您可能需要支持多种设备,并使用各种传感器来收集数据。您可能需要实现实时数据可视化…...

基于Qt5开发图形界面——WiringPi调用Linux单板电脑IO

Qt5——WiringPi Qt5WiringPi示例教程 Qt5 Qt是一种跨平台的应用程序开发框架。它被广泛应用于图形用户界面(GUI)开发,可以用于构建桌面应用程序、移动应用程序和嵌入式应用程序。Qt提供了丰富的功能和工具,使开发人员可以快速、高…...

【MySQL】组合查询

目录 一、组合查询 1.创建组合查询 2.union规则 3.包含或取消重复的行 4.对组合查询结果排序 一、组合查询 多数SQL查询都只包含从一个或多个表中返回数据的单条SELECT语句。MySQL也允许执行多个查询(多条SELECT语句),并将结果作为单个查…...

ChatGPT:引领人机交互的未来

前言 在信息技术飞速发展的时代,人机交互的方式也在不断演进。技术对人们生活和工作的影响。本文将带您深入探讨一款引领人机交互未来的人工智能模型——ChatGPT。 ChatGPT简介 ChatGPT 是一种由开放AI(OpenAI)开发的人工智能模型&#xf…...

【算法】经典的八大排序算法

点击链接 可视化排序 动态演示各个排序算法来加深理解,大致如下 一,冒泡排序(Bubble Sort) 原理 冒泡排序(Bubble Sort)是一种简单的排序算法,它通过多次比较和交换相邻元素的方式,将…...

防溺水预警识别系统算法

防溺水预警识别系统旨在通过opencvpython网络模型深度学习算法,防溺水预警识别系统算法实时监测河道环境,对学生等违规下水游泳等危险行为进行预警和提醒。Python是一种由Guido van Rossum开发的通用编程语言,它很快就变得非常流行&#xff0…...

Redis 的整合 Jedis 使用

大家好 , 我是苏麟 , 今天带来 Jedis 的使用 . Jedis的官网地址&#xff1a; GitHub - redis/jedis: Redis Java client 引入依赖 <!--jedis--> <dependency><groupId>redis.clients</groupId><artifactId>jedis</artifactId><version…...

Mainline Linux 和 U-Boot编译

By Toradex胡珊逢 Toradex 自从 Linux BSP v6 开始在使用 32位处理器的 Arm 模块如 iMX6、iMX6ULL、iMX7 上提供 mainline/upstream kernel &#xff0c;部分 64位处理器模块如 Verdin iMX8M Mini/Plus 也提供实验性支持。文章将以季度发布版本 Linux BSP V6.3.0 为例介绍如何下…...

Mycat教程+面试+linux搭建

目录 一 MyCAT介绍 二 常见的面试题总结 三 linux下搭建Mycat 一 MyCAT介绍 1.1. 什么是MyCAT&#xff1f; 简单的说&#xff0c;MyCAT就是&#xff1a; 一个彻底开源的&#xff0c;面向企业应用开发的“大数据库集群” 支持事务、ACID、可以替代Mysql的加强版数据库 一个可…...

基于工作过程的高职计算机网络技术专业课程体系构建策略

行业人才需求分析高职教育是面向地方行业培养技能型、应用型人才&#xff0c;因此&#xff0c; 在课程体系的构建上要走社会调研、构建岗位群、构建专业模块及课程设置“四步 曲”。即通过社会行业需求调查研究&#xff0c;构建岗位群&#xff0c;设置相应的专业模块&#xf…...

(笔记四)利用opencv识别标记视频中的目标

预操作&#xff1a; 通过cv2将视频的某一帧图片转为HSV模式&#xff0c;并通过鼠标获取对应区域目标的HSV值&#xff0c;用于后续的目标识别阈值区间的选取 img cv.imread(r"D:\data\123.png") img cv.cvtColor(img, cv.COLOR_BGR2HSV) plt.figure(1), plt.imshow…...

一、计算机硬件选购

计算机硬件选购 一、设备选购1.1 I/O设备1.2 机箱1.3 主板1.3.1 主板芯片组的命名方式1.3.2 主板版型1.3.3 Z790-a(DDR5)主板参数 1.4 CPU1.5 硬盘1.6 显卡1.7 内存条1.8 散热器&#xff08;水冷&#xff09;1.9 电源、风扇、网线、插线板1.9.1 电源1.9.2 风扇1.9.3 网线1.9.4 …...

Dockerfile制作LAMP环境镜像

文章目录 使用Dockerfile制作LAMP环境镜像编写Dockerfile不修改默认页面修改默认页面 Start Script目录结构及文件登录私有仓库给镜像打标签上传镜像页面检查检测镜像可用性 使用Dockerfile制作LAMP环境镜像 编写Dockerfile 不修改默认页面 FROM centos:7 MAINTAINER "…...

暴力递归转动态规划(二)

上一篇已经简单的介绍了暴力递归如何转动态规划&#xff0c;如果在暴力递归的过程中发现子过程中有重复解的情况&#xff0c;则证明这个暴力递归可以转化成动态规划。 这篇帖子会继续暴力递归转化动态规划的练习&#xff0c;这道题有点难度。 题目 给定一个整型数组arr[]&…...

debian apt error: Package ‘xxx‘ has no installation candidate

新的debian虚拟机可能会出现这个问题。 修改apt的source.list&#xff0c;位于/etc/apt/source.list&#xff0c;添加两行&#xff1a; deb http://deb.debian.org/debian bullseye main deb-src http://deb.debian.org/debian bullseye main执行&#xff1a; sudo apt-get u…...

c#设计模式-结构型模式 之 外观模式

概述 外观模式&#xff08;Facade Pattern&#xff09;又名门面模式&#xff0c;隐藏系统的复杂性&#xff0c;并向客户端提供了一个客户端可以访问系统的接口。这种类型的设计模式属于结构型模式&#xff0c;它向现有的系统添加一个接口&#xff0c;来隐藏系统的复杂性。该模式…...

Focal Loss-解决样本标签分布不平衡问题

文章目录 背景交叉熵损失函数平衡交叉熵函数 Focal Loss损失函数Focal Loss vs Balanced Cross EntropyWhy does Focal Loss work? 针对VidHOI数据集Reference 背景 Focal Loss由何凯明提出&#xff0c;最初用于图像领域解决数据不平衡造成的模型性能问题。 交叉熵损失函数 …...

运算符(个人学习笔记黑马学习)

算数运算符 加减乘除 #include <iostream> using namespace std;int main() {int a1 10;int a2 20;cout << a1 a2 << endl;cout << a1 - a2 << endl;cout << a1 * a2 << endl;cout << a1 / a2 << endl;/*double a3 …...

开源与专有软件:比较与对比

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…...

基于算法竞赛的c++编程(28)结构体的进阶应用

结构体的嵌套与复杂数据组织 在C中&#xff0c;结构体可以嵌套使用&#xff0c;形成更复杂的数据结构。例如&#xff0c;可以通过嵌套结构体描述多层级数据关系&#xff1a; struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话&#xff1a; “利润不是赚出来的&#xff0c;是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业&#xff0c;很多企业看着销售不错&#xff0c;账上却没钱、利润也不见了&#xff0c;一翻库存才发现&#xff1a; 一堆卖不动的旧货…...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器&#xff0c;可以帮助网站应对分布式拒绝服务攻击&#xff0c;有效识别和清理一些恶意的网络流量&#xff0c;为用户提供安全且稳定的网络环境&#xff0c;那么&#xff0c;高防服务器一般都可以抵御哪些网络攻击呢&#xff1f;下面…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...