MySQL中自带的数据库表相关介绍
mysql的自带数据库表主要有以下几个:
(1)information_schema
(2)performance_schema
(3)mysql
(4)sys
(5)可能存在空数据库test

一、information_schema
1、information_schema库具有61张表。
2、说明
INFORMATION_SCHEMA提供对数据库元数据的访问 ,有关MySQL服务器的信息。例如数据库的名称、表的名称、列的数据类型或访问权限。有时用于此信息的其他术语是数据字典和系统目录。
在INFORMATION_SCHEMA中,有数个只读表。它们实际上是视图,而不是基本表,因此,你将无法看到与之相关的任何文件。
二、performance_schema
1、performance_schema库具有87张表。
2、说明
MySQL 5.5开始新增一个数据库:PERFORMANCE_SCHEMA,主要用于收集数据库服务器性能参数。并且库表里的存储引擎均为PERFORMANCE_SCHEMA,而用户是不能创建存储引擎为PERFORMANCE_SCHEMA的表。
(1)MySQL5.5默认PERFORMANCE_SCHEMA是关闭的,需要手动开启,在配置文件里添加:
performance_schema=ON
(2)查看是否开启:
show variables like 'performance_schema';
(3)PERFORMANCE_SCHEMA从MySQL5.6开始,默认打开。
三、mysql
1、mysql库具有31张表。
2、说明
mysql库是核心数据库,类似于sql server中的master表,主要负责存储数据库的用户(账户)信息、权限设置、关键字等mysql自己需要使用的控制和管理信息。不可以删除,如果对mysql不是很了解,也不要轻易修改这个数据库里面的表信息。
常用举例:在mysql.user表中修改root用户的密码
****如果已经在某个数据库中,需要跳转到其他数据库,只需要use XXX(数据库名称)。但不知道其他数据库的具体名称,可以先use mysql,再show databases查看其他数据库的名称,之后在use XXX(数据库名称)跳转。****
四、sys
1、sys库具有1个表,100个视图。
2.说明
sys库是MySQL 5.7增加的系统数据库,这个库是通过视图的形式把information_schema和performance_schema结合起来,查询出更加令人容易理解的数据。
sys数据库里面包含了一系列的存储过程、自定义函数以及视图来帮助我们快速的了解系统的元数据信息。
sys库所有的数据源来自:performance_schema。目标是把performance_schema的复杂度降低,让DBA能更好的阅读这个库里的内容。让DBA更快的了解DB的运行情况。
五、test
早先版本系统自动创建的测试数据库,是一个空数据库,没有任何表,可以删除。5.7版官方已经删除了test数据库。
相关文章:
MySQL中自带的数据库表相关介绍
mysql的自带数据库表主要有以下几个: (1)information_schema (2)performance_schema (3)mysql (4)sys (5)可能存在空数据库test 一、informa…...
【微信小程序】--注册小程序账号(一)
💌 所属专栏:【微信小程序开发教程】 😀 作 者:我是夜阑的狗🐶 🚀 个人简介:一个正在努力学技术的CV工程师,专注基础和实战分享 ,欢迎咨询! &#…...
Java多线程 - 利用Callable或CompletableFuture实现多线程异步任务执行
文章目录1. Callable接口源码2. Future接口的源码3. RunnableFuture接口和FutureTask实现类4. 利用线程池和Callable接口实现异步执行任务5. 利用CompleteFutable实现多线程异步任务执行1. Callable接口源码 FunctionalInterface public interface Callable<V> {// 这个…...
【ts + webpack】贪吃蛇小游戏
目录 一、项目搭建 1.1 初始化项目 二、项目界面布局 三、完成Food类 四、完成记分牌类 五、初步完成snake类 六、创建游戏控制器类 - 键盘事件 七、GameControl - 使蛇移动 八、蛇撞墙和吃食检测 一、项目搭建 1.1 初始化项目 1.使用init命令生成package.json文件 …...
传统巨头生“变”,中国毫米波雷达市场战火再升级
进入2023年,中国车载毫米波雷达市场战火明显升级。 一方面,愈演愈烈的份额抢夺战不仅仅存在于几大传统巨头之间,也快速转移到与国产供应商之间;随着部分外资巨头的本土化战略深入落地,同时对国产供应商造成了压力。 …...
26岁曾月薪15K,现已失业3个月,我依然没有拿到offer......
我做测试5年,一线城市薪水拿到15K,中间还修了一个专升本,这个年限不说资深肯定也是配得上经验丰富的。今年行情不好人尽皆知,但我还是对我的薪水不是很满意,于是打算出去面试,希望可以搏一个高薪。 但真到面…...
华为OD机试 - 打印文件 | 机试题算法思路 【2023】
最近更新的博客 华为OD机试 - 简易压缩算法(Python) | 机试题算法思路 【2023】 华为OD机试题 - 获取最大软件版本号(JavaScript) 华为OD机试 - 猜字谜(Python) | 机试题+算法思路 【2023】 华为OD机试 - 删除指定目录(Python) | 机试题算法思路 【2023】 华为OD机试 …...
【前端】浏览器的渲染流程(完整)
本文主要包含以下内容:浏览器渲染整体流程解析 HTML样式计算布局分层生成绘制指令分块光栅化绘制常见面试题浏览器渲染整体流程浏览器,作为用户浏览网页最基本的一个入口,我们似乎认为在地址栏输入 URL 后网页自动就出来了。殊不知在用户输入…...
华为OD机试 - 有效子字符串 | 机试题算法思路 【2023】
最近更新的博客 华为OD机试 - 简易压缩算法(Python) | 机试题算法思路 【2023】 华为OD机试题 - 获取最大软件版本号(JavaScript) 华为OD机试 - 猜字谜(Python) | 机试题+算法思路 【2023】 华为OD机试 - 删除指定目录(Python) | 机试题算法思路 【2023】 华为OD机试 …...
抽象类和接口
抽象类和接口 抽象类和接口的定义 抽象类主要用来抽取子类的通用特性,作为子类的模板,它不能被实例化,只能被用作为子类的超类。 接口是抽象方法的集合,声明了一系列的方法操作,如果一个类实现了某个接口,…...
STM32DSP库汇总
前言 本文仅对stm32的DSP库进行汇总,具体函数使用方式持续更新…… 分类函数名描述 BasicMathFunctions 基础数学函数 abs绝对值add加法dot_prod向量点积mult乘法negate相反数offset 偏置 scale比例缩放shift移位sub减法 ComplexMathFunctions 复数数学函数 conj…...
C++类和对象----思想基础应用
类与对象的思想&基础应用一、类声明1.1、封装类的意义1.1.1、在设计类的时候,属性和行为写在一起,表现事物1.1.2、成员权限1.2、struct和class区别1.3、成员属性设置为私有二、对象的初始化和清理2.1、构造函数&析构函数2.2、构造函数分类方法一…...
力扣解法汇总1792. 最大平均通过率
目录链接: 力扣编程题-解法汇总_分享记录-CSDN博客 GitHub同步刷题项目: https://github.com/September26/java-algorithms 原题链接:力扣 描述: 一所学校里有一些班级,每个班级里有一些学生,现在每个班…...
动手学深度学习(第二版)学习笔记 第二章
官网:http://zh.d2l.ai/ 视频可以去b站找 记录的是个人觉得不太熟的知识 第二章 预备知识 代码地址:d2l-zh/pytorch/chapter_preliminaries 2.1 数据操作 2.1. 数据操作 — 动手学深度学习 2.0.0 documentation 如果只想知道张量中元素的总数&#…...
CMake构建静态库与动态库以及使用
CMake构建静态库与动态库一、任务二、准备工作三、编译共享库四、ADD_LIBRARY指令五、编译静态库5.1、SET_TARGET_PROPERTIES指令5.2、GET_TARGET_PROPERTY指令六、动态库版本号七、安装共享库和头文件八、使用外部共享库和头文件8.1、准备工作8.2、引入头文件搜索路径8.3、为 …...
Linux 系统目录结构
登录系统后,在当前命令窗口下输入命令: ls / 你会看到如下图所示: 树状目录结构: 以下是对这些目录的解释: /bin: bin 是 Binaries (二进制文件) 的缩写, 这个目录存放着最经常使用的命令。 /boot: 这里…...
stable diffusion webui安装与使用(官方超简单教程)
预备依赖 下载miniconda 教程参考:https://blog.csdn.net/weixin_43828245/article/details/124768518安装git 参考教程:https://blog.csdn.net/weixin_46474921/article/details/127091723 下载sd-webui 官网 https://github.com/AUTOMATIC1111/stab…...
机器学习:学习k-近邻(KNN)模型建立、使用和评价
机器学习:学习k-近邻(KNN)模型建立、使用和评价 文章目录机器学习:学习k-近邻(KNN)模型建立、使用和评价一、实验目的二、实验原理三、实验环境四、实验内容五、实验步骤1.数据读取2.数据理解3.数据准备4.算…...
Hive Sampling 抽样函数:Random随机抽样、Block 基于数据块抽样、Bucket table 基于分桶表抽样
Hive Sampling 抽样函数 文章目录Hive Sampling 抽样函数Random随机抽样Block 基于数据块抽样Bucket table 基于分桶表抽样语法在HQL中,可以通过三种方式采样数据:随机采样,存储桶表采样和块采样。Random随机抽样 随机抽样使用rand()函数确保…...
2023年中职网络安全竞赛跨站脚本渗透解析-1(超详细)
跨站脚本渗透 任务环境说明:需求环境可私信博主! 服务器场景:Server2125(关闭链接)服务器场景操作系统:未知访问服务器网站目录1,根据页面信息完成条件,将获取到弹框信息作为flag提交;访问服务器网站目录2,根据页面信息完成条件,将获取到弹框信息作为flag提交;访问服…...
深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...
【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...
QT: `long long` 类型转换为 `QString` 2025.6.5
在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...
[Java恶补day16] 238.除自身以外数组的乘积
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...
企业如何增强终端安全?
在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...
laravel8+vue3.0+element-plus搭建方法
创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...
关键领域软件测试的突围之路:如何破解安全与效率的平衡难题
在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件,这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下,实现高效测试与快速迭代?这一命题正考验着…...
深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
