当前位置: 首页 > news >正文

在 macOS 中安装 TensorFlow 1g

tensorflow 需要多大空间

pip install tensorflow

pip install tensorflow
Looking in indexes: https://pypi.douban.com/simple/
Collecting tensorflowDownloading https://pypi.doubanio.com/packages/1a/c1/9c14df0625836af8ba6628585c6d3c3bf8f1e1101cafa2435eb28a776455/tensorflow-2.13.0-cp39-cp39-macosx_10_15_x86_64.whl (216.2 MB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 216.2/216.2 MB 938.0 kB/s eta 0:00:00
Collecting absl-py>=1.0.0 (from tensorflow)Downloading https://pypi.doubanio.com/packages/dd/87/de5c32fa1b1c6c3305d576e299801d8655c175ca9557019906247b994331/absl_py-1.4.0-py3-none-any.whl (126 kB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 126.5/126.5 kB 3.1 MB/s eta 0:00:00
Collecting astunparse>=1.6.0 (from tensorflow)Downloading https://pypi.doubanio.com/packages/2b/03/13dde6512ad7b4557eb792fbcf0c653af6076b81e5941d36ec61f7ce6028/astunparse-1.6.3-py2.py3-none-any.whl (12 kB)
Collecting flatbuffers>=23.1.21 (from tensorflow)Downloading https://pypi.doubanio.com/packages/6f/12/d5c79ee252793ffe845d58a913197bfa02ae9a0b5c9bc3dc4b58d477b9e7/flatbuffers-23.5.26-py2.py3-none-any.whl (26 kB)
Collecting gast<=0.4.0,>=0.2.1 (from tensorflow)Downloading https://pypi.doubanio.com/packages/b6/48/583c032b79ae5b3daa02225a675aeb673e58d2cb698e78510feceb11958c/gast-0.4.0-py3-none-any.whl (9.8 kB)
Collecting google-pasta>=0.1.1 (from tensorflow)Downloading https://pypi.doubanio.com/packages/a3/de/c648ef6835192e6e2cc03f40b19eeda4382c49b5bafb43d88b931c4c74ac/google_pasta-0.2.0-py3-none-any.whl (57 kB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 57.5/57.5 kB 4.8 MB/s eta 0:00:00
Collecting h5py>=2.9.0 (from tensorflow)Downloading https://pypi.doubanio.com/packages/0a/02/c794b1e21ba76ceeb99e5c748240c2ade5bd39d57b2ff050784e6a660f2f/h5py-3.8.0-cp39-cp39-macosx_10_9_x86_64.whl (3.2 MB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.2/3.2 MB 664.2 kB/s eta 0:00:00
Collecting libclang>=13.0.0 (from tensorflow)Downloading https://pypi.doubanio.com/packages/55/47/bbcdba9c08b2fd493648af7da2aeb55508d07aeac6010300bb5b57032ea8/libclang-16.0.0-py2.py3-none-macosx_10_9_x86_64.whl (26.7 MB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 26.7/26.7 MB 677.1 kB/s eta 0:00:00
Requirement already satisfied: numpy<=1.24.3,>=1.22 in /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages (from tensorflow) (1.22.3)
Collecting opt-einsum>=2.3.2 (from tensorflow)Downloading https://pypi.doubanio.com/packages/bc/19/404708a7e54ad2798907210462fd950c3442ea51acc8790f3da48d2bee8b/opt_einsum-3.3.0-py3-none-any.whl (65 kB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 65.5/65.5 kB 1.2 MB/s eta 0:00:00
Requirement already satisfied: packaging in /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages (from tensorflow) (23.1)
Collecting protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3 (from tensorflow)Downloading https://pypi.doubanio.com/packages/b5/eb/59e88dfdcc2ca55aaf067f9ff9289216e44ed659a1a5628382a374d40d99/protobuf-4.23.3-cp37-abi3-macosx_10_9_universal2.whl (400 kB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 400.3/400.3 kB 2.4 MB/s eta 0:00:00
Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages (from tensorflow) (58.1.0)
Requirement already satisfied: six>=1.12.0 in /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages (from tensorflow) (1.15.0)
Collecting termcolor>=1.1.0 (from tensorflow)Downloading https://pypi.doubanio.com/packages/67/e1/434566ffce04448192369c1a282931cf4ae593e91907558eaecd2e9f2801/termcolor-2.3.0-py3-none-any.whl (6.9 kB)
Requirement already satisfied: typing-extensions<4.6.0,>=3.6.6 in /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages (from tensorflow) (4.5.0)
Collecting wrapt>=1.11.0 (from tensorflow)Downloading https://pypi.doubanio.com/packages/b7/3d/9d3cd75f7fc283b6e627c9b0e904189c41ca144185fd8113a1a094dec8ca/wrapt-1.15.0-cp39-cp39-macosx_10_9_x86_64.whl (35 kB)
Collecting grpcio<2.0,>=1.24.3 (from tensorflow)Downloading https://pypi.doubanio.com/packages/97/b3/fb1dcedf39be0854403a28935f2c1e7e4025b3579801c7e91a1cac5b665c/grpcio-1.56.0-cp39-cp39-macosx_10_10_universal2.whl (8.9 MB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 8.9/8.9 MB 1.3 MB/s eta 0:00:00
Collecting tensorboard<2.14,>=2.13 (from tensorflow)Downloading https://pypi.doubanio.com/packages/67/f2/e8be5599634ff063fa2c59b7b51636815909d5140a26df9f02ce5d99b81a/tensorboard-2.13.0-py3-none-any.whl (5.6 MB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 5.6/5.6 MB 4.6 MB/s eta 0:00:00
INFO: pip is looking at multiple versions of tensorflow to determine which version is compatible with other requirements. This could take a while.
Collecting tensorflowDownloading https://pypi.doubanio.com/packages/8e/75/57ff7109b2bab5345e174350df33cb8cde26ef1e87d3935d2d1601288bee/tensorflow-2.12.1-cp39-cp39-macosx_10_15_x86_64.whl (230.1 MB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 230.1/230.1 MB 794.1 kB/s eta 0:00:00
Collecting jax>=0.3.15 (from tensorflow)Downloading https://pypi.doubanio.com/packages/91/06/00616821a40137a96ab8192473687dfbdc5dc87f6aa83c4f36630bc3f11f/jax-0.4.12.tar.gz (1.3 MB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.3/1.3 MB 908.0 kB/s eta 0:00:00Installing build dependencies ... doneGetting requirements to build wheel ... donePreparing metadata (pyproject.toml) ... done
Collecting wrapt<1.15,>=1.11.0 (from tensorflow)Downloading https://pypi.doubanio.com/packages/d9/ab/3ba5816dd466ffd7242913708771d258569825ab76fd29d7fd85b9361311/wrapt-1.14.1-cp39-cp39-macosx_10_9_x86_64.whl (35 kB)
Collecting tensorboard<2.13,>=2.12 (from tensorflow)Downloading https://pypi.doubanio.com/packages/32/09/86e2ef3b4f4ec04bde0eca499325f291ae6b3313381d0666ee20b5b80c73/tensorboard-2.12.3-py3-none-any.whl (5.6 MB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 5.6/5.6 MB 4.3 MB/s eta 0:00:00
Collecting tensorflow-estimator<2.13,>=2.12.0 (from tensorflow)Downloading https://pypi.doubanio.com/packages/d1/e1/c3596da404e2c47561a2bb392397208925e65be6f61bd3081e630371d5e8/tensorflow_estimator-2.12.0-py2.py3-none-any.whl (440 kB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 440.7/440.7 kB 3.2 MB/s eta 0:00:00
Collecting keras<2.13,>=2.12.0 (from tensorflow)Downloading https://pypi.doubanio.com/packages/d5/80/34e55d7e3ed9cf18020929460f969de1bf82cf2f509c639b358ae2b25618/keras-2.12.0-py2.py3-none-any.whl (1.7 MB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.7/1.7 MB 4.7 MB/s eta 0:00:00
Collecting tensorflow-io-gcs-filesystem>=0.23.1 (from tensorflow)Downloading https://pypi.doubanio.com/packages/54/a9/f692e98c381f86ad810e00e4eac0f1fc5a30ba6421db0472fea73a11ec6e/tensorflow_io_gcs_filesystem-0.32.0-cp39-cp39-macosx_10_14_x86_64.whl (1.7 MB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.7/1.7 MB 957.1 kB/s eta 0:00:00
Requirement already satisfied: wheel<1.0,>=0.23.0 in /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages (from astunparse>=1.6.0->tensorflow) (0.37.1)
Collecting ml-dtypes>=0.1.0 (from jax>=0.3.15->tensorflow)Downloading https://pypi.doubanio.com/packages/e6/90/a2fc320d098a72b4c96f97b128bab7449dd479c704075b96bc86bb9e3be5/ml_dtypes-0.1.0-cp39-cp39-macosx_10_9_universal2.whl (317 kB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 317.9/317.9 kB 673.2 kB/s eta 0:00:00
Collecting scipy>=1.7 (from jax>=0.3.15->tensorflow)Downloading https://pypi.doubanio.com/packages/03/c3/5162f7d23a12c62cf0630f6cce20932f166fca7cb5513ed9af56b5618ba6/scipy-1.11.2-cp39-cp39-macosx_10_9_x86_64.whl (37.2 MB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 37.2/37.2 MB 1.2 MB/s eta 0:00:00
Collecting importlib-metadata>=4.6 (from jax>=0.3.15->tensorflow)Downloading https://pypi.doubanio.com/packages/30/bb/bf2944b8b88c65b797acc2c6a2cb0fb817f7364debf0675792e034013858/importlib_metadata-6.6.0-py3-none-any.whl (22 kB)
Collecting google-auth<3,>=1.6.3 (from tensorboard<2.13,>=2.12->tensorflow)Downloading https://pypi.doubanio.com/packages/0d/77/4737ca3b929e95df9234827f7ddcf66199df2d96057ba9a98168957de7fa/google_auth-2.21.0-py2.py3-none-any.whl (182 kB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 182.1/182.1 kB 2.2 MB/s eta 0:00:00
Collecting google-auth-oauthlib<1.1,>=0.5 (from tensorboard<2.13,>=2.12->tensorflow)Downloading https://pypi.doubanio.com/packages/4a/07/8d9a8186e6768b55dfffeb57c719bc03770cf8a970a074616ae6f9e26a57/google_auth_oauthlib-1.0.0-py2.py3-none-any.whl (18 kB)
Collecting markdown>=2.6.8 (from tensorboard<2.13,>=2.12->tensorflow)Downloading https://pypi.doubanio.com/packages/9a/a1/1352b0e5a3c71a79fa9265726e2217f69df9fd4de0bcb5725cc61f62a5df/Markdown-3.4.3-py3-none-any.whl (93 kB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 93.9/93.9 kB 2.6 MB/s eta 0:00:00
Requirement already satisfied: requests<3,>=2.21.0 in /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages (from tensorboard<2.13,>=2.12->tensorflow) (2.28.2)
Collecting tensorboard-data-server<0.8.0,>=0.7.0 (from tensorboard<2.13,>=2.12->tensorflow)Downloading https://pypi.doubanio.com/packages/3c/41/765bbe096ed6a8bb8f091c570505d0b15c4ab87c347ba61164cd1b391b51/tensorboard_data_server-0.7.0-py3-none-macosx_10_9_x86_64.whl (4.8 MB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 4.8/4.8 MB 4.5 MB/s eta 0:00:00
Collecting werkzeug>=1.0.1 (from tensorboard<2.13,>=2.12->tensorflow)Downloading https://pypi.doubanio.com/packages/ba/d6/8040faecaba2feb84e1647af174b3243c9b90c163c7ea407820839931efe/Werkzeug-2.3.6-py3-none-any.whl (242 kB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 242.5/242.5 kB 6.7 MB/s eta 0:00:00
Collecting cachetools<6.0,>=2.0.0 (from google-auth<3,>=1.6.3->tensorboard<2.13,>=2.12->tensorflow)Downloading https://pypi.doubanio.com/packages/a9/c9/c8a7710f2cedcb1db9224fdd4d8307c9e48cbddc46c18b515fefc0f1abbe/cachetools-5.3.1-py3-none-any.whl (9.3 kB)
Collecting pyasn1-modules>=0.2.1 (from google-auth<3,>=1.6.3->tensorboard<2.13,>=2.12->tensorflow)Downloading https://pypi.doubanio.com/packages/cd/8e/bea464350e1b8c6ed0da3a312659cb648804a08af6cacc6435867f74f8bd/pyasn1_modules-0.3.0-py2.py3-none-any.whl (181 kB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 181.3/181.3 kB 1.7 MB/s eta 0:00:00
Collecting rsa<5,>=3.1.4 (from google-auth<3,>=1.6.3->tensorboard<2.13,>=2.12->tensorflow)Downloading https://pypi.doubanio.com/packages/49/97/fa78e3d2f65c02c8e1268b9aba606569fe97f6c8f7c2d74394553347c145/rsa-4.9-py3-none-any.whl (34 kB)
Requirement already satisfied: urllib3<2.0 in /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.13,>=2.12->tensorflow) (1.26.15)
Collecting requests-oauthlib>=0.7.0 (from google-auth-oauthlib<1.1,>=0.5->tensorboard<2.13,>=2.12->tensorflow)Downloading https://pypi.doubanio.com/packages/6f/bb/5deac77a9af870143c684ab46a7934038a53eb4aa975bc0687ed6ca2c610/requests_oauthlib-1.3.1-py2.py3-none-any.whl (23 kB)
Collecting zipp>=0.5 (from importlib-metadata>=4.6->jax>=0.3.15->tensorflow)Downloading https://pypi.doubanio.com/packages/5b/fa/c9e82bbe1af6266adf08afb563905eb87cab83fde00a0a08963510621047/zipp-3.15.0-py3-none-any.whl (6.8 kB)
Requirement already satisfied: charset-normalizer<4,>=2 in /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages (from requests<3,>=2.21.0->tensorboard<2.13,>=2.12->tensorflow) (3.1.0)
Requirement already satisfied: idna<4,>=2.5 in /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages (from requests<3,>=2.21.0->tensorboard<2.13,>=2.12->tensorflow) (3.4)
Requirement already satisfied: certifi>=2017.4.17 in /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages (from requests<3,>=2.21.0->tensorboard<2.13,>=2.12->tensorflow) (2020.6.20)
Collecting MarkupSafe>=2.1.1 (from werkzeug>=1.0.1->tensorboard<2.13,>=2.12->tensorflow)Downloading https://pypi.doubanio.com/packages/77/26/af46880038c6eac3832e751298f1965f3a550f38d1e9ddaabd674860076b/MarkupSafe-2.1.2-cp39-cp39-macosx_10_9_x86_64.whl (13 kB)
Collecting pyasn1<0.6.0,>=0.4.6 (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard<2.13,>=2.12->tensorflow)Downloading https://pypi.doubanio.com/packages/14/e5/b56a725cbde139aa960c26a1a3ca4d4af437282e20b5314ee6a3501e7dfc/pyasn1-0.5.0-py2.py3-none-any.whl (83 kB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 83.9/83.9 kB 3.6 MB/s eta 0:00:00
Collecting oauthlib>=3.0.0 (from requests-oauthlib>=0.7.0->google-auth-oauthlib<1.1,>=0.5->tensorboard<2.13,>=2.12->tensorflow)Downloading https://pypi.doubanio.com/packages/7e/80/cab10959dc1faead58dc8384a781dfbf93cb4d33d50988f7a69f1b7c9bbe/oauthlib-3.2.2-py3-none-any.whl (151 kB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 151.7/151.7 kB 2.4 MB/s eta 0:00:00
Building wheels for collected packages: jaxBuilding wheel for jax (pyproject.toml) ... doneCreated wheel for jax: filename=jax-0.4.12-py3-none-any.whl size=1498447 sha256=ad5dea1b5a274b333fc78d07890dfc3099845634d5aef21bb9d92f703ac57a00Stored in directory: /Users/cc/Library/Caches/pip/wheels/63/9c/97/d124a1f18880ec1c3f2d2fb9d417e30efc57b5259da3c639f9
Successfully built jax
Installing collected packages: libclang, flatbuffers, zipp, wrapt, termcolor, tensorflow-io-gcs-filesystem, tensorflow-estimator, tensorboard-data-server, scipy, pyasn1, protobuf, opt-einsum, oauthlib, ml-dtypes, MarkupSafe, keras, h5py, grpcio, google-pasta, gast, cachetools, astunparse, absl-py, werkzeug, rsa, requests-oauthlib, pyasn1-modules, importlib-metadata, markdown, jax, google-auth, google-auth-oauthlib, tensorboard, tensorflow
Successfully installed MarkupSafe-2.1.2 absl-py-1.4.0 astunparse-1.6.3 cachetools-5.3.1 flatbuffers-23.5.26 gast-0.4.0 google-auth-2.21.0 google-auth-oauthlib-1.0.0 google-pasta-0.2.0 grpcio-1.56.0 h5py-3.8.0 importlib-metadata-6.6.0 jax-0.4.12 keras-2.12.0 libclang-16.0.0 markdown-3.4.3 ml-dtypes-0.1.0 oauthlib-3.2.2 opt-einsum-3.3.0 protobuf-4.23.3 pyasn1-0.5.0 pyasn1-modules-0.3.0 requests-oauthlib-1.3.1 rsa-4.9 scipy-1.11.2 tensorboard-2.12.3 tensorboard-data-server-0.7.0 tensorflow-2.12.1 tensorflow-estimator-2.12.0 tensorflow-io-gcs-filesystem-0.32.0 termcolor-2.3.0 werkzeug-2.3.6 wrapt-1.14.1 zipp-3.15.0

安装 TensorFlow 2
我们在以下 64 位系统上测试过 TensorFlow 并且这些系统支持 TensorFlow:

Python 3.6–3.9
Ubuntu 16.04 或更高版本
Windows 7 或更高版本(含 C++ 可再发行软件包)
macOS 10.12.6 (Sierra) 或更高版本(不支持 GPU)

Requires the latest pip

pip install --upgrade pip

Current stable release for CPU and GPU

pip install tensorflow

Or try the preview build (unstable)

pip install tf-nightly

下载软件包
使用 Python 的 pip 软件包管理器安装 TensorFlow。

TensorFlow 2 软件包需要使用高于 19.0 的 pip 版本(对于 macOS 来说,则需要高于 20.3 的 pip 版本)。
官方软件包支持 Ubuntu、Windows 和 macOS。

有关支持 CUDA® 的卡,请参阅 GPU 指南。

阅读 pip 安装指南
运行 TensorFlow 容器
TensorFlow Docker 映像已经过配置,可运行 TensorFlow。Docker 容器可在虚拟环境中运行,是设置 GPU 支持的最简单方法。

docker pull tensorflow/tensorflow:latest # Download latest stable image
docker run -it -p 8888:8888 tensorflow/tensorflow:latest-jupyter # Start Jupyter server
阅读 Docker 安装指南
Google Colab:学习和使用 TensorFlow 的一种简单方法
无需安装,可直接在浏览器中使用 Colaboratory 运行 TensorFlow 教程。Colaboratory 是一个 Google 研究项目,旨在帮助传播机器学习知识和研究成果。它是一个 Jupyter 笔记本环境,不需要进行任何设置就可以使用,并且完全在云端运行。 阅读博文。

构建首个机器学习应用
创建和部署网页版和移动版 TensorFlow 模型。
Web 开发者
TensorFlow.js 是一个采用 WebGL 加速技术的 JavaScript 库,可用于在浏览器、Node.js、移动设备等平台上训练和部署机器学习模型。
移动开发者
TensorFlow Lite 是针对移动设备和嵌入式设备提供的精简解决方案。
如未另行说明,那么本页面中的内容已根据知识共享署名 4.0 许可获得了许可,并且代码示例已根据 Apache 2.0 许可获得了许可。有关详情,请参阅 Google 开发者网站政策。Java 是 Oracle 和/或其关联公司的注册商标。

-

Successfully
installed
MarkupSafe-2.1.2 absl-py-1.4.0 astunparse-1.6.3 cachetools-5.3.1 flatbuffers-23.5.26 gast-0.4.0 google-auth-2.21.0 google-auth-oauthlib-1.0.0 google-pasta-0.2.0 grpcio-1.56.0 h5py-3.8.0 importlib-metadata-6.6.0 jax-0.4.12 keras-2.12.0 libclang-16.0.0 markdown-3.4.3 ml-dtypes-0.1.0 oauthlib-3.2.2 opt-einsum-3.3.0 protobuf-4.23.3 pyasn1-0.5.0 pyasn1-modules-0.3.0 requests-oauthlib-1.3.1 rsa-4.9 scipy-1.11.2 tensorboard-2.12.3 tensorboard-data-server-0.7.0 tensorflow-2.12.1 tensorflow-estimator-2.12.0 tensorflow-io-gcs-filesystem-0.32.0 termcolor-2.3.0 werkzeug-2.3.6 wrapt-1.14.1 zipp-3.15.0

-

>>> import tensorflow as tf
2023-08-26 21:28:07.847547: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
>>> 

在这里插入图片描述

This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
tf.Tensor([[1. 2.]], shape=(1, 2), dtype=float32)

使用 pip 安装 TensorFlow

bookmark_border

TensorFlow 2 软件包现已推出
tensorflow:支持 CPU 和 GPU 的最新稳定版(适用于 Ubuntu 和 Windows)
tf-nightly:预览 build(不稳定)。Ubuntu 和 Windows 均包含 GPU 支持。
旧版 TensorFlow
对于 TensorFlow 1.x,CPU 和 GPU 软件包是分开的:

tensorflow1.15:仅支持 CPU 的版本
tensorflow-gpu
1.15:支持 GPU 的版本(适用于 Ubuntu 和 Windows)
系统要求
Python 3.6–3.9
若要支持 Python 3.9,需要使用 TensorFlow 2.5 或更高版本。
若要支持 Python 3.8,需要使用 TensorFlow 2.2 或更高版本。
pip 19.0 或更高版本(需要 manylinux2010 支持)
Ubuntu 16.04 或更高版本(64 位)
macOS 10.12.6 (Sierra) 或更高版本(64 位)(不支持 GPU)
macOS 要求使用 pip 20.3 或更高版本
Windows 7 或更高版本(64 位)
适用于 Visual Studio 2015、2017 和 2019 的 Microsoft Visual C++ 可再发行软件包
GPU 支持需要使用支持 CUDA® 的卡(适用于 Ubuntu 和 Windows)
注意:必须使用最新版本的 pip,才能安装 TensorFlow 2。
硬件要求
从 TensorFlow 1.6 开始,二进制文件使用 AVX 指令,这些指令可能无法在旧版 CPU 上运行。
阅读 GPU 支持指南,以在 Ubuntu 或 Windows 上设置支持 CUDA® 的 GPU 卡。

  1. 在系统上安装 Python 开发环境
    检查是否已配置 Python 环境:

需要使用 Python 3.6-3.9 和 pip 19.0 及更高版本

python3 --version
pip3 --version
如果已安装这些软件包,请跳至下一步。
否则,请安装 Python、pip 软件包管理器和 venv:

Ubuntu
macOS
Windows
其他

sudo apt update
sudo apt install python3-dev python3-pip python3-venv
注意:升级系统 pip 可能会导致问题。
如果不是在虚拟环境中,请针对下面的命令使用 python3 -m pip。这样可以确保您升级并使用 Python pip,而不是系统 pip。
2.创建虚拟环境(推荐)
Python 虚拟环境用于将软件包安装与系统隔离开来。

Ubuntu/macOS
Windows
Conda
创建一个新的虚拟环境,方法是选择 Python 解释器并创建一个 ./venv 目录来存放它:

python3 -m venv --system-site-packages ./venv
使用特定于 shell 的命令激活该虚拟环境:

source ./venv/bin/activate # sh, bash, or zsh

. ./venv/bin/activate.fish # fish

source ./venv/bin/activate.csh # csh or tcsh
当虚拟环境处于有效状态时,shell 提示符带有 (venv) 前缀。

在不影响主机系统设置的情况下,在虚拟环境中安装软件包。首先升级 pip:

pip install --upgrade pip

pip list # show packages installed within the virtual environment
之后退出虚拟环境:

deactivate # don’t exit until you’re done using TensorFlow
3.安装 TensorFlow pip 软件包
请从 PyPI 中选择以下某个 TensorFlow 软件包进行安装:

tensorflow:支持 CPU 和 GPU 的最新稳定版(适用于 Ubuntu 和 Windows)。
tf-nightly:预览 build(不稳定)。Ubuntu 和 Windows 均包含 GPU 支持。
tensorflow==1.15:TensorFlow 1.x 的最终版本。
系统会自动安装软件包依赖项。这些依赖项就列在 setup.py 文件的 REQUIRED_PACKAGES 下。
虚拟环境安装
系统安装

pip install --upgrade tensorflow
验证安装效果:

python -c “import tensorflow as tf;print(tf.reduce_sum(tf.random.normal([1000, 1000])))”
成功:如果系统返回了张量,则意味着您已成功安装 TensorFlow。请查看教程开始使用。
软件包位置
部分安装方式需要您提供 TensorFlow Python 软件包的网址。您需要根据 Python 版本指定网址。

版本 网址
Linux
Python 3.6(支持 GPU) https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-2.6.0-cp36-cp36m-manylinux2010_x86_64.whl
Python 3.6(仅支持 CPU) https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow_cpu-2.6.0-cp36-cp36m-manylinux2010_x86_64.whl
Python 3.7(支持 GPU) https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-2.6.0-cp37-cp37m-manylinux2010_x86_64.whl
Python 3.7(仅支持 CPU) https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow_cpu-2.6.0-cp37-cp37m-manylinux2010_x86_64.whl
Python 3.8(支持 GPU) https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-2.6.0-cp38-cp38-manylinux2010_x86_64.whl
Python 3.8(仅支持 CPU) https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow_cpu-2.6.0-cp38-cp38-manylinux2010_x86_64.whl
Python 3.9(支持 GPU) https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-2.6.0-cp39-cp39-manylinux2010_x86_64.whl
Python 3.9(仅支持 CPU) https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow_cpu-2.6.0-cp39-cp39-manylinux2010_x86_64.whl
macOS(仅支持 CPU)
Python 3.6 https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-2.6.0-cp36-cp36m-macosx_10_11_x86_64.whl
Python 3.7 https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-2.6.0-cp37-cp37m-macosx_10_11_x86_64.whl
Python 3.8 https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-2.6.0-cp38-cp38-macosx_10_11_x86_64.whl
Python 3.9 https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-2.6.0-cp39-cp39-macosx_10_11_x86_64.whl
Windows
Python 3.6(支持 GPU) https://storage.googleapis.com/tensorflow/windows/gpu/tensorflow_gpu-2.6.0-cp36-cp36m-win_amd64.whl
Python 3.6(仅支持 CPU) https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow_cpu-2.6.0-cp36-cp36m-win_amd64.whl
Python 3.7(支持 GPU) https://storage.googleapis.com/tensorflow/windows/gpu/tensorflow_gpu-2.6.0-cp37-cp37m-win_amd64.whl
Python 3.7(仅支持 CPU) https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow_cpu-2.6.0-cp37-cp37m-win_amd64.whl
Python 3.8(支持 GPU) https://storage.googleapis.com/tensorflow/windows/gpu/tensorflow_gpu-2.6.0-cp38-cp38-win_amd64.whl
Python 3.8(仅支持 CPU) https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow_cpu-2.6.0-cp38-cp38-win_amd64.whl
Python 3.9(支持 GPU) https://storage.googleapis.com/tensorflow/windows/gpu/tensorflow_gpu-2.6.0-cp39-cp39-win_amd64.whl
Python 3.9(仅支持 CPU) https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow_cpu-2.6.0-cp39-cp39-win_amd64.whl

相关文章:

在 macOS 中安装 TensorFlow 1g

tensorflow 需要多大空间 pip install tensorflow pip install tensorflow Looking in indexes: https://pypi.douban.com/simple/ Collecting tensorflowDownloading https://pypi.doubanio.com/packages/1a/c1/9c14df0625836af8ba6628585c6d3c3bf8f1e1101cafa2435eb28a7764…...

数学建模:CRITIC赋权法

&#x1f506; 文章首发于我的个人博客&#xff1a;欢迎大佬们来逛逛 CRITIC赋权法 算法流程 构建原始数据矩阵 X X X&#xff0c;他是一个 m ∗ n m * n m∗n 的矩阵&#xff0c; m m m 表示评价对象个数&#xff0c; n n n 表示指标个数对原始数据矩阵进行正向化处理计算…...

Facebook message tag 使用攻略

Messenger 讯息传不出去&#xff1f;无法发送FB 讯息给非好友&#xff1f; 2020年3月&#xff0c;Facebook 为了防止用户被过多的推广或垃圾讯息困扰而更新使用条款&#xff0c;现在商家要用FB传讯息给所有人&#xff08;包括非好友&#xff09;&#xff0c;应该使用 Facebook …...

气传导耳机哪个品牌比较好?综合表现很不错的气传导耳机推荐

​气传导耳机不仅能够提升幸福感还能听到周围环境声&#xff0c;大大提高安全性。如果你在寻找一款高品质的气传导耳机&#xff0c;又不知从何入手时&#xff0c;不要担心&#xff0c;我已经为你精心挑选了四款市面上综合表现很不错的气传导耳机&#xff0c;让你享受更好的音质…...

Rabbitmq的消息转换器

Spring会把你发送的消息序列化为字节发送给MQ&#xff0c;接收消息的时候&#xff0c;还会把字节反序列化为Java对象 ,只不过&#xff0c;默认情况下Spring采用的序列化方式是JDK序列化。众所周知&#xff0c;JDK序列化存在下列问题&#xff1a; 数据体积过大 有安全漏洞 可读…...

nvidia-docker的使用

拉取镜像 docker pull nvidia/cuda可能出现的问题 问题描述 Error response from daemon: manifest for nvidia/cuda:latest not found: manifest unknown: manifest解决方法&#xff1a; 为找到正确且合适的docker镜像版本 在supported-tags中找到与自己系统对应的cuda版本…...

C++新经典 | C语言

目录 一、基础之查漏补缺 1.float精度问题 2.字符型数据 3.变量初值问题 4.赋值&初始化 5.头文件之<> VS " " 6.逻辑运算 7.数组 7.1 二维数组初始化 7.2 字符数组 8.字符串处理函数 8.1 strcat 8.2 strcpy 8.3 strcmp 8.4 strlen 9.函数 …...

物联网智慧种植农业大棚系统

一、项目背景 智慧农业是是将物联网技术和农业生产箱管理的新型农业&#xff0c;依托部署在农业生产现场的各种传感节点&#xff0c;以物联网网关为通道形成数据传输网络&#xff0c;可以实现控制柜、环境监测传感器、气象监测机器等设备的远程监控&#xff0c;达到及时高校的…...

TabBar组件如何跳转页面?

1、先引入 2、假数据 const tabs [{key: home,title: 首页,icon: <AppOutline />,badge: Badge.dot,},{key: todo,title: 待办,icon: <UnorderedListOutline />,badge: 5,},{key: message,title: 消息,icon: (active: boolean) >active ? <MessageFill /&…...

Vue.js中,router和route

<div class"search">{{$route.params.things}}<van-nav-bar fixed title"商品列表" left-arrow click-left"$router.go(-1)" /><van-searchreadonlyshape"round"background"#ffffff"value"手机"sh…...

【微服务】07-缓存

文章目录 为不同的场景设计合适的缓存策略1. 缓存是什么2. 缓存的场景3. 缓存的策略4. 缓存位置5. 缓存实现的要点6. 注意问题7. 使用的组件8. 内存缓存和分布式缓存区别 总结 为不同的场景设计合适的缓存策略 1. 缓存是什么 缓存是计算结果的“临时”存储和重复使用缓存本质…...

权限校验中的“双token”方案

1. 双Token中的两个token分别是什么&#xff1f; 1.1 access_token 1.2 fresh_token 2. 为什么需要双token&#xff1f;一个token不行吗&#xff1f; 答&#xff1a; 两个token的职责不同。其中&#xff0c;access_token是在每次请求的时候携带给后端进行权限校验&#xff…...

TensorFlow的基本概念

TensorFlow 是由 Google 开发的开源机器学习框架&#xff0c;其基本概念如下&#xff1a; 1. 张量&#xff08;Tensor&#xff09;&#xff1a;TensorFlow 中最基本的数据结构&#xff0c;是多维数组&#xff0c;可以理解为向量或矩阵的推广。常见的张量有常量张量、变量张量和…...

【卷积神经网络】MNIST 手写体识别

LeNet-5 是经典卷积神经网络之一&#xff0c;1998 年由 Yann LeCun 等人在论文 《Gradient-Based Learning Applied to Document Recognition》中提出。LeNet-5 网络使用了卷积层、池化层和全连接层&#xff0c;实现可以应用于手写体识别的卷积神经网络。TensorFlow 内置了 MNI…...

Ansible学习笔记2

Ansible是Python开发的自动化运维工具&#xff0c;集合了众多运维工具&#xff08;Puppet、cfengine、chef、func、fabric&#xff09;的优点&#xff0c;实现了批量系统配置&#xff0c;批量程序部署、批量运行命令等功能。 特点&#xff1a; 1&#xff09;部署简单&#xff…...

80. 删除有序数组中的重复项 II

【中等题】 题目&#xff1a; 给你一个有序数组 nums &#xff0c;请你 原地 删除重复出现的元素&#xff0c;使得出现次数超过两次的元素只出现两次 &#xff0c;返回删除后数组的新长度。 不要使用额外的数组空间&#xff0c;你必须在 原地 修改输入数组 并在使用 O(1) 额…...

CVE-2023-36874 Windows错误报告服务本地权限提升漏洞分析

CVE-2023-36874 Windows错误报告服务本地权限提升漏洞分析 漏洞简介 Windows错误报告服务在提交错误报告前会创建wermgr.exe进程&#xff0c;而攻击者使用特殊手法欺骗系统创建伪造的wermgr.exe进程&#xff0c;从而以system权限执行代码。 影响版本 Windows10 1507 * Wind…...

IDEA遇到 git pull 冲突的几种解决方法

1 忽略本地修改&#xff0c;强制拉取远程到本地 主要是项目中的文档目录&#xff0c;看的时候可能多了些标注&#xff0c;现在远程文档更新&#xff0c;本地的版本已无用&#xff0c;可以强拉 git fetch --all git reset --hard origin/dev git pull关于commit和pull的先后顺…...

[Unity]UI和美术出图效果不一致

问题描述&#xff1a;美术使用PS在Gamma空间下设计的UI图&#xff0c;导入到Unity&#xff0c;因为Unity使用的是线性空间&#xff0c;导致半透明的UI效果和美术设计的不一致。 解决方案&#xff1a; &#xff08;一&#xff09;让美术在线性空间下工作 &#xff08;二&…...

SpringBoot整合JPA和Hibernate框架

Springboot整合JPAHibernate框架【待完成】 随着MybatisPlus技术的发展&#xff0c;JPA和Hibernate技术已经逐步淘汰 JPA遵循了Hibernate框架规则&#xff0c;目前使用的不多 1、添加依赖 <!--jpa--> <dependency><groupId>org.springframework.boot</…...

Java中文件的创建(三种方式),文件常用的方法

文件的创建 方式1&#xff1a; new File(String pathName) 根据路径构建一个File对象方式2&#xff1a; new File(File parent,String child) 根据父目录文件子路径构建方式3&#xff1a; new File(String parent,String child) 根据父目录子路径构建 代码&#xff1a; //方…...

Spring boot中调用C/C++(dll)

添加JNA依赖 <dependency><groupId>net.java.dev.jna</groupId><artifactId>jna</artifactId><version>5.5.0</version> </dependency>准备C代码/C代码 如下是C代码&#xff0c;文件名&#xff1a;xizi.c #include <std…...

【Apollo学习笔记】——规划模块TASK之PATH_DECIDER

文章目录 前言PATH_DECIDER功能简介PATH_DECIDER相关配置PATH_DECIDER总体流程路径决策代码流程及框架MakeStaticObstacleDecision PATH_DECIDER相关子函数参考 前言 在Apollo星火计划学习笔记——Apollo路径规划算法原理与实践与【Apollo学习笔记】——Planning模块讲到……S…...

Lua学习(二)

Lua基础学习 7. lua函数8. lua运算符8.1 算数运算符8.2 关系运算符8.3 逻辑运算符8.4 其他运算符 9. lua字符串9.1 字符串格式化9.2 匹配模式 10. lua数组11. lua迭代器11.1 Lua table 12. lua 模块12.1 加载机制12.2 C 包 接着上一篇的内容。Lua学习&#xff08;一&#xff09…...

制作鲜花商城小程序的详细步骤

如果你是一个新手商家&#xff0c;想要进入鲜花团购市场&#xff0c;但是不知道如何制作一个小程序商城&#xff0c;那么这篇文章就是为你准备的。以下是制作鲜花团购小程序商城的详细步骤&#xff1a; 1. 登录乔拓云平台后台&#xff0c;进入商城管理页面 首先&#xff0c;你需…...

Ubuntu20以上高版本如何安装低版本GCC

安装了Ubuntu 20.04之后&#xff0c;通过命令行 sudo apt-get install build-essential安装gcc&#xff0c;再通过命令行 gcc -v可查看gcc版本为gcc13 如果想用低版本的gcc&#xff0c;比如gcc4.8&#xff0c;尝试输入命令 sudo apt-get install gcc-4.8会提示找不到gcc4.8的…...

context.WithCancel()的使用

“ WithCancel可以将一个Context包装为cancelCtx,并提供一个取消函数,调用这个取消函数,可以Cancel对应的Context Go语言context包-cancelCtx[1] 疑问 context.WithCancel()取消机制的理解[2] 父母5s钟后出门&#xff0c;倒计时&#xff0c;父母在时要学习&#xff0c;父母一走…...

vue3中引入百度地图

话不多说直接开干 1.第一种方式 百度地图地址 打开 https://lbsyun.baidu.com/index.php?title%E9%A6%96%E9%A1%B5 然后点进去地图 然后再这个功能里面选择一个地图&#xff0c;然后跳转页面 然后一直下滑 滑到底部 点击这个 跳转到这个页面 然后点击进入demo这个 然后到这个…...

【Linux-Day8- 进程替换和信号】

进程替换和信号 问题引入 我们发现 终端输入的任意命令的父进程都是bash,这是因为Linux系统是用fork()复制出子进程&#xff0c;然后在子进程中调用替换函数进行进程替换&#xff0c;实现相关命令。 &#xff08;1&#xff09; exec 系列替换过程&#xff1a;pcb 使用以前的只…...

日志文件之间关系和介绍及应用

1.常用日志框架代码举例 Log4j: Log4j是Java中广泛使用的日志框架之一。它提供了灵活的配置选项和丰富的功能&#xff0c;支持日志级别、日志输出目标等。Log4j有1.x版本和2.x版本&#xff0c;其中Log4j 2.x是对1.x的升级和扩展。 Logback: Logback是由Log4j创始人设计的Log4…...