当前位置: 首页 > news >正文

【数学建模】-- 模糊综合评价

模糊综合评价(Fuzzy Comprehensive Evaluation)是一种用于处理不确定性和模糊性信息的决策分析方法。它通常用于解决复杂的多指标决策问题,其中各指标之间可能存在交叉影响和模糊性的情况。模糊综合评价通过将不确定性和模糊性量化,将多个指标的信息综合起来,得出一个综合的评价结果,用于辅助决策。

该方法的核心思想是利用模糊集合理论来描述和处理不确定性。模糊集合理论允许元素具有一定程度的隶属度,而不是严格的二元分类。这种隶属度可以用来表示一个元素属于一个集合的程度,从而更好地处理信息的模糊性和不完全性。

模糊综合评价的一般步骤包括:

1.指标选择和数据收集: 首先确定需要考虑的评价指标,并收集相关数据。这些指标通常是影响决策结果的因素,如经济、环境、社会等方面的因素。

2.指标标准化: 对收集到的数据进行标准化处理,使得不同指标的值具有可比性,通常是将数据映射到一个统一的量纲或范围内。

3.建立隶属函数: 为每个指标确定相应的隶属函数,用于将实际值映射到模糊集合的隶属度。

4.构建模糊综合评价模型: 利用模糊逻辑运算,将不同指标的隶属度进行组合,得出综合的模糊评价结果。

5.解模糊化: 将模糊评价结果转化为具体的数值,这可以通过一些方法,如平均值法、加权平均法等。

6.结果分析与决策: 对解模糊化后的评价结果进行分析,辅助决策制定。

模糊综合评价方法的优点在于它能够有效地处理不完全信息和不确定性,适用于实际问题中存在模糊性的决策情况。然而,它也存在一些挑战,如对隶属函数的选择、模型参数的确定等问题,这些都需要在具体应用中进行合理的考虑和调整。

思维导图:

概念:

A.数学归纳法和秃子悖论:

秃子悖论,也称为“赫拉克利特的秃子悖论”(The Paradox of the Bald Man),是一个哲学上的悖论,用于探讨判断和定义的复杂性。这个悖论源自古希腊哲学家赫拉克利特(Heraclitus)的思考。悖论的基本形式如下:

1.假设一个人有头发。

2.如果一个人丢失了一根头发,他仍然被认为是有头发的。

3.根据(2),逐一丢失头发,这个人始终被认为是有头发的。

4.但是,在逐渐丢失头发的过程中,总会有一个临界点,此人会被认为是秃头。

5.因此,一个秃头人实际上是“有头发”的,但也是“秃头”的。

这个悖论揭示了在一些判断中,尤其是涉及渐变或连续变化的情况下,界定和定义可能变得模糊和主观。这在逻辑上是一个悖论,因为我们直观上认为一个人要么有头发,要么秃头,不存在中间状态,但是该悖论似乎在辩论中捕捉到了一种模糊的边界情况。

秃子悖论引发了关于界定和判断的哲学思考,以及语言和概念在处理模糊情况时的局限性。它突显了在某些情况下,我们使用的定义可能并不适用于所有情况,尤其是在渐变或连续变化的背景下。

需要注意的是,这个悖论并不是用于逻辑推理的一种形式,而是用来思考语言和概念的局限性以及在某些情况下定义的困难性。

总结:我们没有一个确定的标准来判断一个人是否为秃子,判断的标准非常模糊。

B.数学中量的划分:

C.生活中处处存在模型性:

D.模糊数学的介绍:

经典集合和模糊集合的基本概念

1.经典集合和特征函数:

有确定的评判指标

2.模糊集合和隶属函数:

没用准确的评判指标,但是对于每个元素均对应于模糊集合有一个隶属度,隶属度越大越属于这种集合。

模糊集合的三种表示方法:

隶属函数的三种确定方法:

方法三则为根据每类因素或者等级通过相关的模型来构建隶属函数来确定隶属度(通常是用方法三来确定隶属函数)

模糊综合评价的应用:

  1. 评价问题概述:
  2. 一级模糊综合评价(在企业员工评价中的应用):

步骤:

  1. 确定因素集合
  2. 确定评价集合
  3. 确定评价集合各元素权重的集合A
  4. 根据因素集合和评价集合确定评价矩阵R

e.通过A与R相乘得到一个向量,数值越大的越优秀。

列题:

多级模糊综合评价:

  1. 二级模糊综合评价:

列题:

先将二级评价利用一级模糊综合评价得到B1……Bm

在将所有分类的Bi组成的矩阵当成R最后通过B=A*R的到评价排名。

  1. 三级模糊综合评价:

和二级综合评级价一样,先分类,在将多级的评价先按一级评价计算出Bi再层层计算最后只剩下最后一层。

                              

相关文章:

【数学建模】-- 模糊综合评价

模糊综合评价(Fuzzy Comprehensive Evaluation)是一种用于处理不确定性和模糊性信息的决策分析方法。它通常用于解决复杂的多指标决策问题,其中各指标之间可能存在交叉影响和模糊性的情况。模糊综合评价通过将不确定性和模糊性量化&#xff0…...

Java 数据库改了一个字段, 前端传值后端接收为null问题解决

前端传值后端为null的原因可能有很多种,我遇到一个问题是,数据库修改了一个字段,前端传值了,但是后台一直接收为null值, 原因排查: 1、字段没有匹配上,数据库字段和前端字段传值不一致 2、大…...

lnmp架构-mysql1

1.MySQL数据库编译 make完之后是这样的 mysql 初始化 所有这种默认不在系统环境中的路径里 就这样加 这样就可以直接调用 不用输入路径调用 2.初始化 重置密码 3.mysql主从复制 配置master 配置slave 当master 端中还没有插入数据时 在server2 上配slave 此时master 还没进…...

Threadlocal在项目中的应用

ThreadLocal为每一线程提供一份单独的存储空间,具有线程隔离的作用 PageHelper.startPage()方法使用ThreadLocal来保存分页参数,保证线程安全性。PageHelper通过集成MyBatis的拦截器机制来实现对SQL语句的拦截和修改 项目中使用了ThreadLocal保存每个线程…...

个性化定制你的AI助手,AI指令提示词专家

『个性化定制你的AI助手』围观不如下场!需要学习AI指令提升能力的,精准输出想要内容的,快来订阅 javastarboy『AI指令保姆级拆解』合集! ▶️你是否尚未挖掘到 AI 的潜力? ▶️你是否经常遇到“答非所问”的“人工智障…...

mongodb聚合排序的一个巨坑

现象: mongodb cpu动不动要100%,如下图 分析原因: 查看慢日志发现,很多条这样的查询,一直未执行行完成,占用大量的CPU [{$match: {"tags.taskId": "64dae0a9deb52d2f9a1bd71e",grnty: …...

无涯教程-分类算法 - 随机森林

随机森林是一种监督学习算法,可用于分类和回归,但是,它主要用于分类问题,众所周知,森林由树木组成,更多树木意味着更坚固的森林。同样,随机森林算法在数据样本上创建决策树,然后从每…...

c#常见的排序算法

在C#中,常见的排序算法包括以下几种: 1. 冒泡排序(Bubble Sort):比较相邻的元素,如果顺序不对就交换它们,重复多次直到排序完成。 2. 插入排序(Insertion Sort)&#xf…...

Redis 持久化和发布订阅

一、持久化 Redis 是内存数据库,如果不将内存中的数据库状态保存到磁盘,那么一旦服务器进程退出,服务器中的数据库状态也会消失。所以 Redis 提供了持久化功能! 1.1、RDB(Redis DataBase) 1.1.1 …...

k8s使用ECK(2.4)形式部署elasticsearch+kibana-http协议

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、准备elasticsearch-cluster.yaml二、部署并测试总结 前言 之前写了eck2.4部署eskibana,默认的话是https协议的,这里写一个使用http…...

[maven]关于pom文件中的<relativePath>标签

关于pom文件中的<relativePath>标签 为什么子工程要使用relativePath准确的找到父工程pom.xml.因为本质继承就是pom的继承。父工程pom文件被子工程复用了标签。&#xff08;可以说只要我在父工程定义了标签&#xff0c;子工程就可以没有&#xff0c;因为他继承过来了&…...

11. 网络模型保存与读取

11.1 网络模型保存(方式一) import torchvision import torch vgg16 torchvision.models.vgg16(pretrainedFalse) torch.save(vgg16,"./model/vgg16_method1.pth") # 保存方式一&#xff1a;模型结构 模型参数 print(vgg16) 结果&#xff1a; VGG((feature…...

新SDK平台下载开源全志V853的SDK

获取SDK SDK 使用 Repo 工具管理&#xff0c;拉取 SDK 需要配置安装 Repo 工具。 Repo is a tool built on top of Git. Repo helps manage many Git repositories, does the uploads to revision control systems, and automates parts of the development workflow. Repo is…...

多图详解VSCode搭建Java开发环境

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…...

基于JavaWeb和mysql实现网上书城前后端管理系统(源码+数据库+开题报告+论文+答辩技巧+项目功能文档说明+项目运行指导)

一、项目简介 本项目是一套基于JavaWeb和mysql实现网上书城前后端管理系统&#xff0c;主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的Java学习者。 包含&#xff1a;项目源码、项目文档、数据库脚本等&#xff0c;该项目附带全部源码可作为毕设使用。 项目都…...

Swift创建单例

Objective-C使用GCD 中的dispatch_once_t 可以保证里面的代码只被调用一次&#xff0c;以此保证单例在线程上的安全。 但是在Swift 中由于废弃了原有的Dispatch once方法&#xff0c;因此无法使用once 进行单例的创建。 我们可以使用struct 存储类型变量&#xff0c;并且使用…...

问道管理:市盈率怎么计算?

市盈率是衡量一家公司股票价格是否合理的重要目标之一&#xff0c;核算市盈率的公式是将一家公司的股票价格除以每股收益&#xff0c;也便是市盈率 股票价格 每股收益。市盈率能够告诉你一个公司的股票价格是否高估或轻视&#xff0c;是投资者在买入或卖出一家公司股票时需求…...

Ansible File模块,Ansible File模块详解,文件管理的自动化利器

Ansible是一款强大的自动化工具&#xff0c;用于管理和配置IT基础设施。在Ansible中&#xff0c;File模块&#xff08;File Module&#xff09;是一个重要的组件&#xff0c;用于文件管理和操作。本文将深入探讨Ansible File模块&#xff0c;了解它如何成为文件管理的自动化利器…...

记录http与mqtt的区别

HTTP是最流行和最广泛使用的协议。但在过去几年中&#xff0c;MQTT迅速获得了牵引力。当我们谈论物联网开发时&#xff0c;开发人员必须在它们之间做出选择。 设计和消息传递 MQTT以数据为中心&#xff0c;而HTTP是以文档为中心的。HTTP是用于客户端 – 服务器计算的请求 – …...

导入excel数据给前端Echarts实现中国地图-类似热力图可视化

导入excel数据给前端Echarts实现中国地图-类似热力图可视化 程序文件&#xff1a; XinqiDaily/frontUtils-showSomeDatabaseonMapAboutChina/finalproject xin麒/XinQiUtilsOrDemo - 码云 - 开源中国 (gitee.com) https://gitee.com/flowers-bloom-is-the-sea/XinQiUtilsOr…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

2021-03-15 iview一些问题

1.iview 在使用tree组件时&#xff0c;发现没有set类的方法&#xff0c;只有get&#xff0c;那么要改变tree值&#xff0c;只能遍历treeData&#xff0c;递归修改treeData的checked&#xff0c;发现无法更改&#xff0c;原因在于check模式下&#xff0c;子元素的勾选状态跟父节…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块&#xff0c;它提供了一个轻量级的 HTTP 服务器实现&#xff0c;主要用于构建基于 HTTP 的应用程序和服务。 功能介绍&#xff1a; 主要功能 HTTP服务器功能&#xff1a; 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比

目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec&#xff1f; IPsec VPN 5.1 IPsec传输模式&#xff08;Transport Mode&#xff09; 5.2 IPsec隧道模式&#xff08;Tunne…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南&#xff1a;从入门到实战 一、Grunt 是什么&#xff1f; Grunt是一个基于 Node.js 的前端自动化任务运行器&#xff0c;主要用于自动化执行项目开发中重复性高的任务&#xff0c;例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...