当前位置: 首页 > news >正文

ransac拟合平面,代替open3d的segment_plane

0.open3d打包太大了,所以决定网上找找代码

使用open3d拟合平面并且求平面的法向量,open3d打包大概1个g的大小。

import open3d as o3dpcd = o3d.geometry.PointCloud()pcd.points = o3d.utility.Vector3dVector(points)## 使用RANSAC算法拟合平面plane_model, inliers = pcd.segment_plane(distance_threshold, ransac_n, num_iterations, probability)plane_normal = np.array(plane_model[:3])plane_normal /= np.linalg.norm(plane_normal)X_normal = [1, 0, 0]Y_normal = [0, 1, 0]Z_normal = [0, 0, 1]# 计算夹角(单位为弧度)angle = np.arccos(np.dot(plane_normal, X_normal))# 将夹角转换为角度X_angel = degrees(angle)# 计算夹角(单位为弧度)angle = np.arccos(np.dot(plane_normal, Y_normal))# 将夹角转换为角度Y_angel = degrees(angle)# 计算夹角(单位为弧度)angle = np.arccos(np.dot(plane_normal, Z_normal))# 将夹角转换为角度Z_angel = degrees(angle)

1.找了一个git上的代码

https://github.com/leomariga/pyRANSAC-3D/blob/master/pyransac3d/plane.py

import randomimport numpy as npclass Plane:"""Implementation of planar RANSAC.Class for Plane object, which finds the equation of a infinite plane using RANSAC algorithim.Call `fit(.)` to randomly take 3 points of pointcloud to verify inliers based on a threshold.![Plane](https://raw.githubusercontent.com/leomariga/pyRANSAC-3D/master/doc/plano.gif "Plane")---"""def __init__(self):self.inliers = []self.equation = []def fit(self, pts, thresh=0.05, minPoints=100, maxIteration=1000):"""Find the best equation for a plane.:param pts: 3D point cloud as a `np.array (N,3)`.:param thresh: Threshold distance from the plane which is considered inlier.:param maxIteration: Number of maximum iteration which RANSAC will loop over.:returns:- `self.equation`:  Parameters of the plane using Ax+By+Cy+D `np.array (1, 4)`- `self.inliers`: points from the dataset considered inliers---"""n_points = pts.shape[0]best_eq = []best_inliers = []for it in range(maxIteration):# Samples 3 random pointsid_samples = random.sample(range(0, n_points), 3)pt_samples = pts[id_samples]# We have to find the plane equation described by those 3 points# We find first 2 vectors that are part of this plane# A = pt2 - pt1# B = pt3 - pt1vecA = pt_samples[1, :] - pt_samples[0, :]vecB = pt_samples[2, :] - pt_samples[0, :]# Now we compute the cross product of vecA and vecB to get vecC which is normal to the planevecC = np.cross(vecA, vecB)# The plane equation will be vecC[0]*x + vecC[1]*y + vecC[0]*z = -k# We have to use a point to find kvecC = vecC / np.linalg.norm(vecC)k = -np.sum(np.multiply(vecC, pt_samples[1, :]))plane_eq = [vecC[0], vecC[1], vecC[2], k]# Distance from a point to a plane# https://mathworld.wolfram.com/Point-PlaneDistance.htmlpt_id_inliers = []  # list of inliers idsdist_pt = (plane_eq[0] * pts[:, 0] + plane_eq[1] * pts[:, 1] + plane_eq[2] * pts[:, 2] + plane_eq[3]) / np.sqrt(plane_eq[0] ** 2 + plane_eq[1] ** 2 + plane_eq[2] ** 2)# Select indexes where distance is biggers than the thresholdpt_id_inliers = np.where(np.abs(dist_pt) <= thresh)[0]if len(pt_id_inliers) > len(best_inliers):best_eq = plane_eqbest_inliers = pt_id_inliersself.inliers = best_inliersself.equation = best_eqreturn self.equation, self.inliers

2.改进代码

2.1 提速

用的时候发现代码的速度比open3d的慢了50ms左右。找了一圈找到方法了
https://zhuanlan.zhihu.com/p/62238520
就是替换循环次数

import randomimport numpy as npclass Plane:"""Implementation of planar RANSAC.Class for Plane object, which finds the equation of a infinite plane using RANSAC algorithim.Call `fit(.)` to randomly take 3 points of pointcloud to verify inliers based on a threshold.![Plane](https://raw.githubusercontent.com/leomariga/pyRANSAC-3D/master/doc/plano.gif "Plane")---"""def __init__(self):self.inliers = []self.equation = []def fit(self, pts, thresh=0.05, minPoints=100, maxIteration=1000, P=0.99):"""Find the best equation for a plane.:param pts: 3D point cloud as a `np.array (N,3)`.:param thresh: Threshold distance from the plane which is considered inlier.:param maxIteration: Number of maximum iteration which RANSAC will loop over.:param P: desired probability that we get a good sample:returns:- `self.equation`:  Parameters of the plane using Ax+By+Cy+D `np.array (1, 4)`- `self.inliers`: points from the dataset considered inliers---"""n_points = pts.shape[0]best_eq = []best_inliers = []i = 0while True:if i < maxIteration:i += 1# Samples 3 random pointsid_samples = random.sample(range(0, n_points), 3)pt_samples = pts[id_samples]# We have to find the plane equation described by those 3 points# We find first 2 vectors that are part of this plane# A = pt2 - pt1# B = pt3 - pt1vecA = pt_samples[1, :] - pt_samples[0, :]vecB = pt_samples[2, :] - pt_samples[0, :]# Now we compute the cross product of vecA and vecB to get vecC which is normal to the planevecC = np.cross(vecA, vecB)# The plane equation will be vecC[0]*x + vecC[1]*y + vecC[0]*z = -k# We have to use a point to find kvecC = vecC / np.linalg.norm(vecC)k = -np.sum(np.multiply(vecC, pt_samples[1, :]))plane_eq = [vecC[0], vecC[1], vecC[2], k]# Distance from a point to a plane# https://mathworld.wolfram.com/Point-PlaneDistance.htmlpt_id_inliers = []  # list of inliers idsdist_pt = (plane_eq[0] * pts[:, 0] + plane_eq[1] * pts[:, 1] + plane_eq[2] * pts[:, 2] +plane_eq[3]) / np.sqrt(plane_eq[0] ** 2 + plane_eq[1] ** 2 + plane_eq[2] ** 2)# Select indexes where distance is biggers than the thresholdpt_id_inliers = np.where(np.abs(dist_pt) <= thresh)[0]#https://www.cse.psu.edu/~rtc12/CSE486/lecture15.pdf#speed upif len(pt_id_inliers) > len(best_inliers):maxIteration = math.log(1 - P) / math.log(1 - pow(len(pt_id_inliers) / n_points, 3))best_eq = plane_eqbest_inliers = pt_id_inliersself.inliers = best_inliersself.equation = best_eqif len(pt_id_inliers) > minPoints:breakreturn self.equation, self.inliers

2.2 提升精度

经过测试发现,拟合的平面的精度还是比open3d差。然后使用最小二乘法在求一次平面了

def ransac_fitplan(pts, thresh=5,num_iterations=1000):# # 希望的得到正确模型的概率n_points = pts.shape[0]best_inliers = []P = 0.9999i=0while True:if i<num_iterations:i+=1# 随机在数据中红选出两个点去求解模型id_samples = random.sample(range(0, n_points), 3)pt_samples = pts[id_samples]vecA = pt_samples[1, :] - pt_samples[0, :]vecB = pt_samples[2, :] - pt_samples[0, :]# Now we compute the cross product of vecA and vecB to get vecC which is normal to the planevecC = np.cross(vecA, vecB)# The plane equation will be vecC[0]*x + vecC[1]*y + vecC[0]*z = -k# We have to use a point to find kvecC = vecC / np.linalg.norm(vecC)k = -np.sum(np.multiply(vecC, pt_samples[1, :]))plane_eq = [vecC[0], vecC[1], vecC[2], k]pt_id_inliers = []  # list of inliers idsdist_pt = (plane_eq[0] * pts[:, 0] + plane_eq[1] * pts[:, 1] + plane_eq[2] * pts[:, 2] + plane_eq[3]) / np.sqrt(plane_eq[0] ** 2 + plane_eq[1] ** 2 + plane_eq[2] ** 2)# Select indexes where distance is biggers than the thresholdpt_id_inliers = np.where(np.abs(dist_pt) <= thresh)[0]if len(pt_id_inliers) > len(best_inliers):num_iterations = math.log(1 - P) / math.log(1 - pow(len(pt_id_inliers) / n_points, 3))best_inliers = pt_id_inliers# 判断是否当前模型已经符合超过一半的点if len(pt_id_inliers) > 0.5*n_points:breakelse:break# 最小二乘法拟合平面X = np.column_stack((pts[:, :2], np.ones(pts.shape[0])))coefficients, _, _, _ = lstsq(X[best_inliers, :], pts[best_inliers, 2])return coefficients,best_inliers

相关文章:

ransac拟合平面,代替open3d的segment_plane

0.open3d打包太大了&#xff0c;所以决定网上找找代码 使用open3d拟合平面并且求平面的法向量&#xff0c;open3d打包大概1个g的大小。 import open3d as o3dpcd o3d.geometry.PointCloud()pcd.points o3d.utility.Vector3dVector(points)## 使用RANSAC算法拟合平面plane_m…...

Docker技术--Docker镜像管理

1.Docker镜像特性 ①.镜像创建容器的特点 Docker在创建容器的时候需要指定镜像,每一个镜像都有唯一的标识:image_id,也可也使用镜像名称和版本号做唯一的标识,如果不指定版本号,那么默认使用的是最新的版本标签(laster)。 ②.镜像分层机制 Docker镜像是分层构建的,并通过…...

生态环境保护3D数字展厅提供了一个线上环保知识学习平台

在21世纪的今天&#xff0c;科技与环保的交汇点提供了无数令人兴奋的可能性。其中&#xff0c;生态环境保护3D数字展厅就是一个绝佳的例子。这个展厅以其独特的3D技术&#xff0c;为我们带来了一个全新的、互动的学习环境&#xff0c;让我们能够更直观地了解和理解我们的环境。…...

OPENCV实现计算描述子

1、计算描述子 kp,des = sift.computer(img,kp) 2、其作用是进行特征匹配 3、同时计算关键点和描述 3.1、kp,des = sift.detectAnd Computer(img,...)...

Android View动画之LayoutAnimation的使用

接前篇 Android View动画整理 &#xff0c;本篇介绍 LayoutAnimation 的使用。 参考《安卓开发艺术探索》。 View 动画作用于 View 。 LayoutAnimation 则作用于 ViewGroup &#xff0c; 为 ViewGoup 指定一个动画&#xff0c;ViewGoup 的子 View 出场时就具体动画效果。 简言…...

低代码与低代码平台的概念解析

随着数字化转型和软件需求的不断增长&#xff0c;传统的手写代码开发方式已经无法满足迅速推出应用程序的需求。为了加快软件开发的速度并降低技术门槛&#xff0c;低代码开发模式应运而生。本文将介绍低代码的概念&#xff0c;探讨什么是低代码什么是低代码平台&#xff1f; 一…...

玩转Mysql系列 - 第8篇:详解排序和分页(order by limit),及存在的坑

这是Mysql系列第7篇。 环境&#xff1a;mysql5.7.25&#xff0c;cmd命令中进行演示。 代码中被[]包含的表示可选&#xff0c;|符号分开的表示可选其一。 本章内容 详解排序查询 详解limit limit存在的坑 分页查询中的坑 排序查询&#xff08;order by&#xff09; 电商…...

Django实现音乐网站 ⒂

使用Python Django框架制作一个音乐网站&#xff0c; 本篇主要是歌手详情页-基本信息、单曲列表功能开发实现内容。 目录 歌手基本信息 增加路由 显示视图 模板显示 推荐歌手跳转详情 歌手增加基本信息 表模型增加字段 数据表更新 基本信息增加内容渲染 歌手单曲列表…...

爬虫逆向实战(二十八)--某税网第一步登录

一、数据接口分析 主页地址&#xff1a;某税网 1、抓包 通过抓包可以发现登录接口是factorAccountLogin 2、判断是否有加密参数 请求参数是否加密&#xff1f; 通过查看载荷模块可以发现有一个datagram 和 一个signature加密参数 请求头是否加密&#xff1f; 通过查看“标…...

【Dots之003】SystemAPI.Query相关基础笔记

1、SystemAPI.Query 注&#xff1a;SystemAPI.Query只能作为foreach中in的的子句 SystemAPI.Query<RefRO<LocalTransform>>().WithAll<Obstacle>()解析&#xff1a;对于每个具有LocalTransform和Obstacle的Entity&#xff1b;都会将LocalTransform的只读引…...

vue v-for 例子

vue v-for 例子 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title> </head&…...

206.Flink(一):flink概述,flink集群搭建,flink中执行任务,单节点、yarn运行模式,三种部署模式的具体实现

一、Flink概述 1.基本描述 Flink官网地址:Apache Flink — Stateful Computations over Data Streams | Apache Flink Flink是一个框架和分布式处理引擎,用于对无界和有界数据流进行有状态计算。 2.有界流和无界流 无界流(流): 有定义流的开始,没有定义结束。会无休止…...

科技探究之旅--亲子研学活动

2023年8月26日&#xff0c;广州市从化区齐家社会工作服务中心&#xff08;以下简称“齐家”&#xff09;的“星乐园-乡村儿童公益辅导服务项目”组织了新开村及西湖村助学点24对亲子到广州市白云区文搏3D打印基地进行“科技探究之旅--亲子研学”活动&#xff0c;旨在发现、点燃…...

华为云Stack的学习(三)

四、华为云Stack公共组件 1.华为云Stack公共负载均衡方案介绍 1.1 LVS原理 LVS是四层负载均衡&#xff0c;建立在OSI模型的传输层之上&#xff0c;所以效率非常高。 LVS有两种转发模式&#xff1a; NAT模式的转发主要通过修改IP地址&#xff08;位于OSI模型的第三层网络层&…...

大数据平台三大优势详解-行云管家

大数据平台三大优势详解 1、轻松进行数据共享 企业在管理以及快速发展过程中&#xff0c;有着越来越多的数据需要进行管理&#xff0c;如果单独管理则工作量巨大&#xff0c;且难免出现问题&#xff0c;同时共享难。因此需要大数据平台对数据进行统一管理&#xff0c;以及轻松…...

智慧景区方案:AI与视频融合技术如何助力景区监管智能化升级?

随着经济的发展&#xff0c;人们对生活的需求也不再局限于温饱层面&#xff0c;越来越多的人们开始追求文化、艺术的高层次需求&#xff0c;旅游也逐渐成为人们日常放松的一种方式。由于我国人口多、易扎堆等特点&#xff0c;景区的运营监管方式也亟需改革。TSINGSEE青犀智能分…...

HTML基础--Form表单--内联元素

目录 Form表单 表单元素 创建表单 () 文本输入 () 密码输入 单选按钮 () 和 复选框 () 下拉列表 () 和 选项 ()提交按钮 () 重置按钮 () 块元素与行内元素&#xff08;内联元素&#xff09; Form表单 HTML中的表单&#xff08;<form>&#xff09;是一个重要的元…...

【月度刷题计划同款】常规状压 DP 启发式搜索

题目描述 这是 LeetCode 上的 「1879. 两个数组最小的异或值之和」 &#xff0c;难度为 「困难」。 Tag : 「状压 DP」、「动态规划」、「启发式搜索」 给你两个整数数组 nums1 和 nums2&#xff0c;它们长度都为 n。 两个数组的 异或值之和 为 (nums1[0] XOR nums2[0]) (nums…...

C#: Json序列化和反序列化,集合为什么多出来一些元素?

如下面的例子&#xff0c;很容易看出问题&#xff1a; 如果类本身的无参构造函数&#xff0c; 就添加了一些元素&#xff0c;序列化&#xff0c;再反序列化&#xff0c;会导致元素增加。 如果要避免&#xff0c;必须添加&#xff1a; new JsonSerializerSettings() { Object…...

Docker教程-centos快速安装和配置Docker

# step 1: 安装必要的一些系统工具 sudo yum install -y yum-utils device-mapper-persistent-data lvm2# Step 2: 添加软件源信息 sudo yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo# Step 3: 更新并安装 Docker-CE sudo …...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日&#xff0c;2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席&#xff0c;并作《智能体在安全领域的应用实践》主题演讲&#xff0c;分享了在智能体在安全领域的突破性实践。他指出&#xff0c;百度通过将安全能力…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案

这个问题我看其他博主也写了&#xff0c;要么要会员、要么写的乱七八糟。这里我整理一下&#xff0c;把问题说清楚并且给出代码&#xff0c;拿去用就行&#xff0c;照着葫芦画瓢。 问题 在继承QWebEngineView后&#xff0c;重写mousePressEvent或event函数无法捕获鼠标按下事…...

招商蛇口 | 执笔CID,启幕低密生活新境

作为中国城市生长的力量&#xff0c;招商蛇口以“美好生活承载者”为使命&#xff0c;深耕全球111座城市&#xff0c;以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子&#xff0c;招商蛇口始终与城市发展同频共振&#xff0c;以建筑诠释对土地与生活的…...

现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?

现有的 Redis 分布式锁库&#xff08;如 Redisson&#xff09;相比于开发者自己基于 Redis 命令&#xff08;如 SETNX, EXPIRE, DEL&#xff09;手动实现分布式锁&#xff0c;提供了巨大的便利性和健壮性。主要体现在以下几个方面&#xff1a; 原子性保证 (Atomicity)&#xff…...