【数据结构】多叉树转换为二叉树-c++代码实现-POJ 3437 Tree Grafting
文章目录
- 写这个题目的原因
- 寻找提交网址
- 题目解决思路
- AC代码
- 成功AC
写这个题目的原因
1、今天在看王道考研数据结构的课(虽然我要保研,但是因为这些看保研面试的时候会问,所以看一下嘞orz),看到了这个多叉树转换为二叉树的知识点。
2、上学期上编译原理课的时候老师上课也提问过这个问题,所以今天尝试着用c++的代码实现一下。
寻找提交网址
1、POJ不知道为什么,提交任何代码都一直报错
(目前时间为2023年8月30日)
然后我去了洛谷、AcWing、LeetCode、PTA都没有搜到这个题目。。。
2、无奈之下去了VJudge,最终在一个韩国的OJ上提交了这个题目,并成功AC,中间的过程也算是一波三折。
这里附上提交的网址:
Tree Grafting(韩国的OJ)
Tree Grafting(POJ)
题目解决思路
题目输入有多行,每行代表一个建树的过程,由d或者u组成。d表示往下新建节点,u表示往上走到当前节点的父亲,这样走下来就得到了一个多叉树。
最终让求解:
1、多叉树的深度,即dep1
2、转换后的二叉树的深度,即dpe2
对于dep1,通过观察输入的字符串可以发现,每一个d即为往下新建一个节点,这里我们可以使用“前缀和”的思想,新建一个变量t,初始值为0,遇到d加一,遇到u减一,在这个过程中最大的t即为要求解的dep1
比如对于题目给出的第一个输入,初始t=0
dudduduudu, 对应的t为
1012121010,所以多叉树的深度为2,即为求解的第一个变量
对于dep2的求解,我们可以对所有的节点设置唯一的一个变量标记(用int就可以实现),然后进行反向建边,用一个一维的数组就可以存储所有的二叉树
当然看到这里有人可能会问,为什么不正向建边?
答:因为这是一个多叉树,一个节点可能有多个儿子,题目的最多节点为10000,那么如果正向建边的话,至少得10000^2大小的数组,可能会爆内存!
这样反向建边之后,我们相当于已经存储了每一个节点的父亲,那么接下来就是很常见的多叉树转换为二叉树的思路了
我们依次遍历所有节点,对于当前节点,如果
1、如果它父亲的左子为空:
那么直接把当前节点作为它父亲的左子
2、如果它父亲的左子不为空:
那么找它父亲左子的最右边的儿子(在这里我们定义为temp),把当前节点作为temp的右子
上面这个点如果不明白,可以百度搜索一下【多叉树怎么转换为二叉树?】会有比较详细的解释
更多细节和注释见代码
AC代码
#include <stdio.h>
#include <cstring>
#include <iostream>
using namespace std;
#define ll long long
#define sf(x) scanf("%d", &x);
#define de(x) cout << x << " ";
#define Pu puts("");
const int N = 2e4 + 9; // 注意这里,题目中说节点最多为1e4,但是字符串长度最多为2e4
int n, m, ans;
int dep1, dep2; // 求解的变量
char s[N]; // 输入的字符串
int fa[N]; // 记录每个节点的父亲
struct E {int dep; // 存储二叉树的数据结构int l, r;
} e[N];
int main() {int now; // 代表当前所处的节点位置int count; // 代表当前新建的节点标号int depTmp; // 统计多叉树的深度int T = 0;while (scanf("%s", s)) {if (s[0] == '#')break;T++;n = strlen(s);for (int i = 0; i < n + 1; i++) {fa[i] = -1; // 所有点标记为没有父亲e[i].l = e[i].r = -1;}now = 0; // 代表当前所处的位置count = 0; // 代表当前新建的节点标号depTmp = dep1 = 0;for (int i = 0; i < n; i++) {if (s[i] == 'd') {count++;fa[count] = now; // 向下,反向建边now = count;depTmp++; // 进行深度统计if (depTmp > dep1)dep1 = depTmp;} else if (s[i] == 'u') {now = fa[now]; // 向上depTmp--;}}e[0].dep = 0;dep2 = 0;for (int i = 1; i <= count; i++) {if (e[fa[i]].l == -1) {e[fa[i]].l = i; // 如果此时父亲节点没有左子,则当前节点作为左子e[i].dep = e[fa[i]].dep + 1;if (e[i].dep > dep2) // 深度更新dep2 = e[i].dep;} else { // 如果已经有了左子int k = e[fa[i]].l;while (e[k].r != -1) {k = e[k].r; // 则找左子的最右孩子}e[k].r = i; // 新的右孩子e[i].dep = e[k].dep + 1;if (e[i].dep > dep2) // 深度更新dep2 = e[i].dep;}}printf("Tree %d: %d => %d\n", T, dep1, dep2);}return 0;
}
成功AC

相关文章:
【数据结构】多叉树转换为二叉树-c++代码实现-POJ 3437 Tree Grafting
文章目录 写这个题目的原因寻找提交网址题目解决思路AC代码成功AC 写这个题目的原因 1、今天在看王道考研数据结构的课(虽然我要保研,但是因为这些看保研面试的时候会问,所以看一下嘞orz),看到了这个多叉树转换为二叉…...
ASP.NET Core 中基于 Controller 的 Web API
基于 Controller 的 Web API ASP.NET Wep API 的请求架构 客户端发送Http请求,Contoller响应请求,并从数据库读取数据,序列化数据,然后通过 Http Response返回序列化的数据。 ControllerBase 类 Web API 的所有controllers 一般…...
iOS系统修复软件 Fix My iPhone for Mac
Fix My iPhone for Mac是一款iOS系统恢复工具。修复您的iPhone卡在Apple徽标,黑屏,冻结屏幕,iTunes更新/还原错误和超过20个iOS 12升级失败。这个macOS桌面应用程序提供快速,即时的解决方案来修复您的iOS系统问题,而不…...
Git企业开发控制理论和实操-从入门到深入(七)|企业级开发模型
前言 那么这里博主先安利一些干货满满的专栏了! 首先是博主的高质量博客的汇总,这个专栏里面的博客,都是博主最最用心写的一部分,干货满满,希望对大家有帮助。 高质量博客汇总 然后就是博主最近最花时间的一个专栏…...
15. 卡牌游戏
目录 题目 思路 C整体代码(含详细注释) 题目 Description 小张在玩一种卡牌游戏,牌组由张牌组成,其中张上写有数字各一张,其余张上全部是数字。 现在牌组经过随机打乱后,小张拿走其中张牌作为手牌&#…...
vue使用打印组件print-js
项目场景: 由于甲方要求,项目需要打印二维码标签,故开发此功能 开发流程 安装包:npm install print-js --saveprint-js的使用 <template><div id"print" ref"print" ><p>打印内容<p&…...
20230830比赛总结
分数 预估分数: 100 100 [ 0 , 20 ] 100 [ 300 , 320 ] 100100[0,20]100[300,320] 100100[0,20]100[300,320] 实际分数: 100 100 10 100 310 10010010100310 10010010100310 反思 B 只是粗略观察表就急于写决策单调性优化,写完后…...
DNS指向别名还是IP
现在有一台服务器dbprod126,ip是172.22.100.4 现在有一个需求,需要在dns中对dbprod126建一个别名wondadb3r的记录,也就是ping wondadb3r的时候显示的是dbprod126的ip,目前有两种方法,主要使用方法1指向别名…...
【考研数学】概率论与数理统计 —— 第二章 | 一维随机变量及其分布(1,基本概念与随机变量常见类型)
文章目录 引言一、一维随机变量及其分布1.1 随机变量1.2 分布函数 二、随机变量常见类型及分布2.1 离散型随机变量2.2 连续型随机变量及概率密度函数 写在最后 引言 暑假接近尾声了,争取赶一点概率论部分的进度。 一、一维随机变量及其分布 1.1 随机变量 设随机试…...
CSS判断手机暗黑模式
手机有个功能到了晚上会自动变成深色也就是暗黑模式.这种情况下网页会自动变颜色.如果想自由控制暗黑模式下的html样式的话,可以用如下方式: media (prefers-color-scheme: dark) {/*html, body {*//*filter: invert(1) hue-rotate(180deg);*//*}*/.maill{margin-left: 0;marg…...
【java中的Set集合】HashSet、LinkedHashSet、TreeSet(最通俗易懂版!!)
目录 一、HashSet集合 1.HashSet集合的特点 2.HashSet常用方法 二、LinkedHashSet集合 LinkedHashSet集合的特点 三、TreeSet集合 1.TreeSet集合的特点 2.TreeSet的基本使用 四、HashSet、LinkedHashSet、TreeSet的使用场景 五、list和set集合的区别 一、HashSet集合 …...
python中的文件操作
我们平常对文件的基本操作,大概可以分为三个步骤(简称文件操作三步走): ① 打开文件 ② 读写文件 ③ 关闭文件 【注意事项】 注意:可以只打开和关闭文件,不进行任何读写 文件打开 open函数ÿ…...
spark支持深度学习批量推理
背景 在数据量较大的业务场景中,spark在数据处理、传统机器学习训练、 深度学习相关业务,能取得较明显的效率提升。 本篇围绕spark大数据背景下的推理,介绍一些优雅的使用方式。 spark适用场景 大数据量自定义方法处理、类sql处理传统机器…...
代码随想录打卡—day52—【子序列问题】— 8.31 最大子序列
共性 做完下面三题,发现三个的dp数组中i都是以 i 为结束的字串。 1 300. 最长递增子序列 300. 最长递增子序列 AC: class Solution { public:int dp[10010]; // 表示以i结束的子序列最大的长度/*if(nums[j] > nums[i])dp[j] max(dp[j],dp[i] …...
gcc4.8.5升级到gcc4.9.2
第1步:获取repo [rootlocalhost SPECS]# wget --no-check-certificate https://copr.fedoraproject.org/coprs/rhscl/devtoolset-3/repo/epel-6/rhscl-devtoolset-3-epel-6.repo -O /etc/yum.repos.d/devtoolset-3.repo --2021-12-07 20:53:26-- https://copr.fedo…...
Golang 中的 archive/zip 包详解(三):常用函数
Golang 中的 archive/zip 包用于处理 ZIP 格式的压缩文件,提供了一系列用于创建、读取和解压缩 ZIP 格式文件的函数和类型,使用起来非常方便,本文讲解下常用函数。 zip.OpenReader 定义如下: func OpenReader(name string) (*R…...
微服务架构七种模式
微服务架构七种模式 目录概述需求: 设计思路实现思路分析 参考资料和推荐阅读 Survive by day and develop by night. talk for import biz , show your perfect code,full busy,skip hardness,make a better result,wait for change,challenge Survive.…...
关于CICD流水线的前端项目运行错误,npm项目环境配置时出现报错:Not Found - GET https://registry.npm...
关于CICD流水线的前端项目运行错误,npm项目环境配置时出现报错:Not Found - GET https://registry.npm… 原因应该是某些jar包缓存中没有需要改变镜像将包拉下来 npm config set registry http://registry.npm.taobao.org npm install npm run build...
element-plus的周选择器 一周从周一开始
1、代码 1)、template中 <el-date-picker v-model"value1" type"week" format"[Week] ww" placeholder"巡访周" change"change"value-format"YYYY-MM-DD" /> 2)、方法中 import…...
Android 9.0 pms获取应用列表时过滤掉某些app功能实现
1.前言 在9.0的系统rom定制化开发中,对系统定制的功能也是很多的,在一次产品开发中,要求在第三方app获取应用列表的时候,需要过滤掉某些app,就是不显示在app应用列表中,这就需要在pms查询app列表时过滤掉这些app就可以了,接下来就实现这些功能 2.pms获取应用列表时过滤掉…...
基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...
ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
NFT模式:数字资产确权与链游经济系统构建
NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...
【JavaWeb】Docker项目部署
引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...
RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...
Redis:现代应用开发的高效内存数据存储利器
一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...
