时序预测 | MATLAB实现基于QPSO-BiGRU、PSO-BiGRU、BiGRU时间序列预测
时序预测 | MATLAB实现基于QPSO-BiGRU、PSO-BiGRU、BiGRU时间序列预测
目录
- 时序预测 | MATLAB实现基于QPSO-BiGRU、PSO-BiGRU、BiGRU时间序列预测
- 效果一览
- 基本描述
- 程序设计
- 参考资料
效果一览












基本描述
1.时序预测 | MATLAB实现基于QPSO-BiGRU、PSO-BiGRU、BiGRU时间序列预测;
2.单变量时间序列数据集;
3.运行环境Matlab2020及以上,依次运行Main1GRUTS、Main2PSOBiGRUTS、Main3QPSOBiGRUTS、Main4CDM即可,其余为函数文件无需运行,所有程序放在一个文件夹,data为数据集,单变量时间序列;
BiGRU(双向门控循环单元模型)与粒子群算法优化后的BiGRU(PSOBiGRU)以及量子粒子群算法优化后的BiGRU(QPSOBiGRU)对比实验,可用于风电、光伏等负荷预测,时序预测,数据为单变量时间序列数据集,PSO、QPSO优化超参数为隐含层1节点数、隐含层2节点数、最大迭代次数和学习率。
4.命令窗口输出MAE、MAPE、RMSE和R2;
程序设计
- 完整程序和数据下载:私信博主回复MATLAB实现基于QPSO-BiGRU、PSO-BiGRU、BiGRU时间序列预测。
Function_name='F1'; % Name of the test function that can be from F1 to F23 (Table 1,2,3 in the paper) 设定适应度函数
[lb,ub,dim,fobj]=Get_Functions_details(Function_name); %设定边界以及优化函数N=20;
M=1000;
[xm1,trace1]=pso(N,M,dim,lb,ub,fobj);
[xm2,trace2]=qpso(N,M,dim,lb,ub,fobj);figure('Position',[269 240 660 290])
%Draw search space
subplot(1,2,1);
func_plot(Function_name);
title('Parameter space')
xlabel('x_1');
ylabel('x_2');
zlabel([Function_name,'( x_1 , x_2 )'])%Draw objective space
subplot(1,2,2);
plot(trace1,'Color','b','linewidth',1.5)
hold on
plot(trace2,'Color','r','linewidth',1.5)
title('Objective space')
xlabel('Iteration');
ylabel('Best score obtained so far');axis tight
grid on
box on
legend('PSO','QPSO')%% 取对数 更方便看
figure
plot(log10(trace1),'linewidth',1.5)
hold on
plot(log10(trace2),'linewidth',1.5)
legend('PSO','QPSO')
title('PSO VS QPSO')
xlabel('iteration/M')
ylabel('fitness value(log10)')
function func_plot(func_name)[lb,ub,dim,fobj]=Get_Functions_details(func_name);switch func_name case 'F1' x=-100:2:100; y=x; %[-100,100]case 'F2' x=-100:2:100; y=x; %[-10,10]case 'F3' x=-100:2:100; y=x; %[-100,100]case 'F4' x=-100:2:100; y=x; %[-100,100]case 'F5' x=-200:2:200; y=x; %[-5,5]case 'F6' x=-100:2:100; y=x; %[-100,100]case 'F7' x=-1:0.03:1; y=x %[-1,1]case 'F8' x=-500:10:500;y=x; %[-500,500]case 'F9' x=-5:0.1:5; y=x; %[-5,5] case 'F10' x=-20:0.5:20; y=x;%[-500,500]case 'F11' x=-500:10:500; y=x;%[-0.5,0.5]case 'F12' x=-10:0.1:10; y=x;%[-pi,pi]case 'F13' x=-5:0.08:5; y=x;%[-3,1]case 'F14' x=-100:2:100; y=x;%[-100,100]case 'F15' x=-5:0.1:5; y=x;%[-5,5]case 'F16' x=-1:0.01:1; y=x;%[-5,5]case 'F17' x=-5:0.1:5; y=x;%[-5,5]case 'F18' x=-5:0.06:5; y=x;%[-5,5]case 'F19' x=-5:0.1:5; y=x;%[-5,5]case 'F20' x=-5:0.1:5; y=x;%[-5,5] case 'F21' x=-5:0.1:5; y=x;%[-5,5]case 'F22' x=-5:0.1:5; y=x;%[-5,5] case 'F23' x=-5:0.1:5; y=x;%[-5,5]
end L=length(x);
f=[];for i=1:Lfor j=1:Lif strcmp(func_name,'F15')==0 && strcmp(func_name,'F19')==0 && strcmp(func_name,'F20')==0 && strcmp(func_name,'F21')==0 && strcmp(func_name,'F22')==0 && strcmp(func_name,'F23')==0f(i,j)=fobj([x(i),y(j)]);endif strcmp(func_name,'F15')==1f(i,j)=fobj([x(i),y(j),0,0]);endif strcmp(func_name,'F19')==1f(i,j)=fobj([x(i),y(j),0]);endif strcmp(func_name,'F20')==1f(i,j)=fobj([x(i),y(j),0,0,0,0]);end if strcmp(func_name,'F21')==1 || strcmp(func_name,'F22')==1 ||strcmp(func_name,'F23')==1f(i,j)=fobj([x(i),y(j),0,0]);end end
end
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/127596777?spm=1001.2014.3001.5501
[2] https://download.csdn.net/download/kjm13182345320/86830096?spm=1001.2014.3001.5501
相关文章:
时序预测 | MATLAB实现基于QPSO-BiGRU、PSO-BiGRU、BiGRU时间序列预测
时序预测 | MATLAB实现基于QPSO-BiGRU、PSO-BiGRU、BiGRU时间序列预测 目录 时序预测 | MATLAB实现基于QPSO-BiGRU、PSO-BiGRU、BiGRU时间序列预测效果一览基本描述程序设计参考资料 效果一览 基本描述 1.时序预测 | MATLAB实现基于QPSO-BiGRU、PSO-BiGRU、BiGRU时间序列预测&a…...
el-select码值枚举
当码值的数据是自己写的时候: 例如:isOrNo:[{label:是,value:1},{label:否,value:‘2’}], 当传给后端值时下拉选择是,值为1,我们当前拿到的只是值为value:1࿰…...
【多面体:知识蒸馏:Pansharpening】
Multipatch Progressive Pansharpening With Knowledge Distillation (基于知识蒸馏的多面体渐进锐化算法) 在这篇文章中,我们提出了一种新的多面体和多级泛锐化方法与知识蒸馏,称为PSDNet。不同于现有的pansharpening方法&…...
【python爬虫】4.爬虫实操(菜品爬取)
文章目录 前言项目:解密吴氏私厨分析过程代码实现(一)获取与解析提取最小父级标签一组菜名、URL、食材写循环,存列表 代码实现(二)复习总结 前言 上一关,我们学习了用BeautifulSoup库解析数据和…...
深圳发墨西哥专线要多久才能清关?
深圳发往墨西哥专线的货物清关时间会受到多种因素的影响,包括货物的性质、数量、海关政策、运输方式以及货物的文件准备等。下面将详细介绍这些因素对清关时间的影响。 1.货物的性质和数量是影响清关时间的重要因素之一。 一般来说,墨西哥专线中普通商品…...
Java-泛型
文章目录 Java泛型什么是泛型?在哪里使用泛型?设计出泛型的好处是什么?动手设计一个泛型泛型的限定符泛型擦除泛型的通配符 结论 Java泛型 什么是泛型? Java泛型是一种编程技术,它允许在编译期间指定使用的数据类型。…...
【python爬虫】8.温故而知新
文章目录 前言回顾前路代码实现体验代码功能拆解获取数据解析提取数据存储数据 程序实现与总结 前言 Hello又见面了!上一关我们学习了爬虫数据的存储,并成功将QQ音乐周杰伦歌曲信息的数据存储进了csv文件和excel文件。 学到这里,说明你已经…...
vue3组合式api 父子组件数据同步v-model语法糖的用法
V-model 大多数情况是用在 表单数据上的, 但它不止这一个作用 父子组件的数据同步, 有一个 语法糖 v-model,这个方法简化了语法, 在elementplus中,都有很多地方使用, 所以我们要理解清楚 父组件 使用 v-mod…...
环境异常总结
1.vue项目 npm run dev 运行时报错:webpack-dev-server --inline --progress --config build/webpack.dev.conf.js 不是内部或外部命令 原因:webpack-dev-server存在问题 解决方案:指定 webpack-dev-server 低版本号 方法: 删除 …...
[论文笔记]DSSM
引言 这是DSSM论文的阅读笔记,后续会有一篇文章来复现它并在中文数据集上验证效果。 本文的标题翻译过来就是利用点击数据学习网页搜索中深层结构化语义模型,这篇论文被归类为信息检索,但也可以用来做文本匹配。 这是一篇经典的工作,在DSSM之前,通常使用传统机器学习的…...
Skip Connection——提高深度神经网络性能的利器
可以参考一下这篇知乎所讲 https://zhuanlan.zhihu.com/p/457590578 长跳跃连接用于将信息从编码器传播到解码器,以恢复在下采样期间丢失的信息...
EXCEL中点击单元格,所在行和列都改变颜色
在日常工作中,尤其是办公室工作人群,尝尝需要处理大量的数据,在对数据进行修改时,时长发生看错行的事情,导致数据越改越乱,因此,我常用的一种方法就是选中单元格时,所在行、列标记为…...
HAProxy(一)
四层负载均衡与七层负载均衡区别 四层负载均衡和七层负载均衡是两种不同的负载均衡方式,主要区别在于负载均衡的层级及其所支持的协议不同。 四层负载均衡,也称为传输层负载均衡,工作在 OSI 模型的传输层(第四层)&am…...
LeetCode--HOT100题(46)
目录 题目描述:114. 二叉树展开为链表(中等)题目接口解题思路代码 PS: 题目描述:114. 二叉树展开为链表(中等) 给你二叉树的根结点 root ,请你将它展开为一个单链表: 展开后的单链…...
深度探索JavaScript中的原型链机制
🏆作者简介,黑夜开发者,全栈领域新星创作者✌,CSDN博客专家,阿里云社区专家博主,2023年6月csdn上海赛道top4。 🏆数年电商行业从业经验,历任核心研发工程师,项目技术负责…...
一种基于WinDump自动抓包实现方法
本发明的技术方案包括以下步骤和组件: 配置抓包参数:设置抓包的IP、端口以及过滤包大小等参数,以控制抓取的数据范围。循环自动抓包:利用WinDump工具实现循环自动抓包功能,类似于记录日志的方式保留抓包数据。当抓包数…...
taro 支付宝/微信小程序/h5 上传 - base64的那些事儿
支付宝小程序临时path转base64 - 基础库2.0以下 function getImageInfo(path) {return new Promise(resolve > {my.getImageInfo({src: path,success: res > {resolve(res)}})}) } export async function getBase64InAlipay({ id, path }) {const { width, height } awa…...
java之SpringBoot基础、前后端项目、MyBatisPlus、MySQL、vue、elementUi
文章目录 前言JC-1.快速上手SpringBootJC-1-1.SpringBoot入门程序制作(一)JC-1-2.SpringBoot入门程序制作(二)JC-1-3.SpringBoot入门程序制作(三)JC-1-4.SpringBoot入门程序制作(四)…...
Vue-Router 一篇搞定 Vue3
前言 在 Web 前端开发中,路由是非常重要的一环,但是路由到底是什么呢? 从路由的用途上讲 路由是指随着浏览器地址栏的变化,展示给用户不同的页面。 从路由的实现原理上讲 路由是URL到函数的映射。它将 URL 和应用程序的不同部分…...
深度解读智能媒体服务的重组和进化
统一“顶设”的智能媒体服务。 邹娟|演讲者 大家好,首先欢迎各位来到LVS的阿里云专场,我是来自阿里云视频云的邹娟。我本次分享的主题为《从规模化到全智能:智能媒体服务的重组与进化》。 本次分享分为以上四部分,一是…...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
golang循环变量捕获问题
在 Go 语言中,当在循环中启动协程(goroutine)时,如果在协程闭包中直接引用循环变量,可能会遇到一个常见的陷阱 - 循环变量捕获问题。让我详细解释一下: 问题背景 看这个代码片段: fo…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
SQL慢可能是触发了ring buffer
简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...
FFmpeg:Windows系统小白安装及其使用
一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】,注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录(即exe所在文件夹)加入系统变量…...
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的----NTFS源代码分析--重要
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的 第一部分: 0: kd> g Breakpoint 9 hit Ntfs!ReadIndexBuffer: f7173886 55 push ebp 0: kd> kc # 00 Ntfs!ReadIndexBuffer 01 Ntfs!FindFirstIndexEntry 02 Ntfs!NtfsUpda…...
