当前位置: 首页 > news >正文

day 43 | ● 123.买卖股票的最佳时机III ● 188.买卖股票的最佳时机IV

123.买卖股票的最佳时机III

在这里插入图片描述
在这里插入图片描述

func maxProfit(prices []int) int {dp := make([][]int , len(prices))dp[0] = []int{0, -prices[0], 0, -prices[0], 0}for i := 1; i < len(prices);i++{val0 := dp[i - 1][0]val1 := max(dp[i - 1][0] - prices[i], dp[i - 1][1])val2 := max(dp[i - 1][1] + prices[i], dp[i - 1][2])val3 := max(dp[i - 1][2] - prices[i], dp[i - 1][3])val4 := max(dp[i - 1][3] + prices[i], dp[i - 1][4])dp[i] = []int{val0, val1, val2, val3, val4}}return dp[len(prices)- 1][4]
}
func max(a, b int)int{if a < b{return b}return a
}

● 188.买卖股票的最佳时机IV
和买卖股票3中的思路一样,只不过从两次换成了k次

func maxProfit(k int, prices []int) int {dp := make([][]int, len(prices))for i := 0; i < len(dp); i++{tmp := make([]int, 2 * k + 1)dp[i] = tmpif i == 0{for j := 1; j < 2 * k + 1; j += 2{dp[i][j] = -prices[0]}}}for i := 1; i < len(dp); i++{dp[i][0] = dp[i - 1][0]for j :=1; j < 2 * k + 1; j += 2{dp[i][j] = max(dp[i - 1][j - 1] - prices[i], dp[i - 1][j])dp[i][j + 1] = max(dp[i - 1][j] + prices[i], dp[i - 1][j + 1])}}return dp[len(prices) - 1][2 * k]
}
func max(a , b int)int{if a < b{return b}return a
}

相关文章:

day 43 | ● 123.买卖股票的最佳时机III ● 188.买卖股票的最佳时机IV

123.买卖股票的最佳时机III func maxProfit(prices []int) int {dp : make([][]int , len(prices))dp[0] []int{0, -prices[0], 0, -prices[0], 0}for i : 1; i < len(prices);i{val0 : dp[i - 1][0]val1 : max(dp[i - 1][0] - prices[i], dp[i - 1][1])val2 : max(dp[i - …...

客路旅行(KLOOK)面试(部分)(未完全解析)

一面 用过Chatgpt的哪个版本&#xff0c;了解Chatgpt版本之间的差异吗 什么是优雅部署&#xff1f;newBing: 服务启动时&#xff0c;检查依赖的组件或容器是否就绪&#xff0c;如果不就绪&#xff0c;等待或重试&#xff0c;直到就绪后再注册到服务中心&#xff0c;对外提供服…...

时序预测 | MATLAB实现基于QPSO-BiGRU、PSO-BiGRU、BiGRU时间序列预测

时序预测 | MATLAB实现基于QPSO-BiGRU、PSO-BiGRU、BiGRU时间序列预测 目录 时序预测 | MATLAB实现基于QPSO-BiGRU、PSO-BiGRU、BiGRU时间序列预测效果一览基本描述程序设计参考资料 效果一览 基本描述 1.时序预测 | MATLAB实现基于QPSO-BiGRU、PSO-BiGRU、BiGRU时间序列预测&a…...

el-select码值枚举

当码值的数据是自己写的时候&#xff1a; 例如&#xff1a;isOrNo&#xff1a;[{label:是,value:1},{label:否&#xff0c;value&#xff1a;‘2’}]&#xff0c; 当传给后端值时下拉选择是&#xff0c;值为1&#xff0c;我们当前拿到的只是值为value&#xff1a;1&#xff0…...

【多面体:知识蒸馏:Pansharpening】

Multipatch Progressive Pansharpening With Knowledge Distillation &#xff08;基于知识蒸馏的多面体渐进锐化算法&#xff09; 在这篇文章中&#xff0c;我们提出了一种新的多面体和多级泛锐化方法与知识蒸馏&#xff0c;称为PSDNet。不同于现有的pansharpening方法&…...

【python爬虫】4.爬虫实操(菜品爬取)

文章目录 前言项目&#xff1a;解密吴氏私厨分析过程代码实现&#xff08;一&#xff09;获取与解析提取最小父级标签一组菜名、URL、食材写循环&#xff0c;存列表 代码实现&#xff08;二&#xff09;复习总结 前言 上一关&#xff0c;我们学习了用BeautifulSoup库解析数据和…...

深圳发墨西哥专线要多久才能清关?

深圳发往墨西哥专线的货物清关时间会受到多种因素的影响&#xff0c;包括货物的性质、数量、海关政策、运输方式以及货物的文件准备等。下面将详细介绍这些因素对清关时间的影响。 1.货物的性质和数量是影响清关时间的重要因素之一。 一般来说&#xff0c;墨西哥专线中普通商品…...

Java-泛型

文章目录 Java泛型什么是泛型&#xff1f;在哪里使用泛型&#xff1f;设计出泛型的好处是什么&#xff1f;动手设计一个泛型泛型的限定符泛型擦除泛型的通配符 结论 Java泛型 什么是泛型&#xff1f; Java泛型是一种编程技术&#xff0c;它允许在编译期间指定使用的数据类型。…...

【python爬虫】8.温故而知新

文章目录 前言回顾前路代码实现体验代码功能拆解获取数据解析提取数据存储数据 程序实现与总结 前言 Hello又见面了&#xff01;上一关我们学习了爬虫数据的存储&#xff0c;并成功将QQ音乐周杰伦歌曲信息的数据存储进了csv文件和excel文件。 学到这里&#xff0c;说明你已经…...

vue3组合式api 父子组件数据同步v-model语法糖的用法

V-model 大多数情况是用在 表单数据上的&#xff0c; 但它不止这一个作用 父子组件的数据同步&#xff0c; 有一个 语法糖 v-model&#xff0c;这个方法简化了语法&#xff0c; 在elementplus中&#xff0c;都有很多地方使用&#xff0c; 所以我们要理解清楚 父组件 使用 v-mod…...

环境异常总结

1.vue项目 npm run dev 运行时报错&#xff1a;webpack-dev-server --inline --progress --config build/webpack.dev.conf.js 不是内部或外部命令 原因&#xff1a;webpack-dev-server存在问题 解决方案&#xff1a;指定 webpack-dev-server 低版本号 方法&#xff1a; 删除 …...

[论文笔记]DSSM

引言 这是DSSM论文的阅读笔记,后续会有一篇文章来复现它并在中文数据集上验证效果。 本文的标题翻译过来就是利用点击数据学习网页搜索中深层结构化语义模型,这篇论文被归类为信息检索,但也可以用来做文本匹配。 这是一篇经典的工作,在DSSM之前,通常使用传统机器学习的…...

Skip Connection——提高深度神经网络性能的利器

可以参考一下这篇知乎所讲 https://zhuanlan.zhihu.com/p/457590578 长跳跃连接用于将信息从编码器传播到解码器&#xff0c;以恢复在下采样期间丢失的信息...

EXCEL中点击单元格,所在行和列都改变颜色

在日常工作中&#xff0c;尤其是办公室工作人群&#xff0c;尝尝需要处理大量的数据&#xff0c;在对数据进行修改时&#xff0c;时长发生看错行的事情&#xff0c;导致数据越改越乱&#xff0c;因此&#xff0c;我常用的一种方法就是选中单元格时&#xff0c;所在行、列标记为…...

HAProxy(一)

四层负载均衡与七层负载均衡区别 四层负载均衡和七层负载均衡是两种不同的负载均衡方式&#xff0c;主要区别在于负载均衡的层级及其所支持的协议不同。 四层负载均衡&#xff0c;也称为传输层负载均衡&#xff0c;工作在 OSI 模型的传输层&#xff08;第四层&#xff09;&am…...

LeetCode--HOT100题(46)

目录 题目描述&#xff1a;114. 二叉树展开为链表&#xff08;中等&#xff09;题目接口解题思路代码 PS: 题目描述&#xff1a;114. 二叉树展开为链表&#xff08;中等&#xff09; 给你二叉树的根结点 root &#xff0c;请你将它展开为一个单链表&#xff1a; 展开后的单链…...

深度探索JavaScript中的原型链机制

&#x1f3c6;作者简介&#xff0c;黑夜开发者&#xff0c;全栈领域新星创作者✌&#xff0c;CSDN博客专家&#xff0c;阿里云社区专家博主&#xff0c;2023年6月csdn上海赛道top4。 &#x1f3c6;数年电商行业从业经验&#xff0c;历任核心研发工程师&#xff0c;项目技术负责…...

一种基于WinDump自动抓包实现方法

本发明的技术方案包括以下步骤和组件&#xff1a; 配置抓包参数&#xff1a;设置抓包的IP、端口以及过滤包大小等参数&#xff0c;以控制抓取的数据范围。循环自动抓包&#xff1a;利用WinDump工具实现循环自动抓包功能&#xff0c;类似于记录日志的方式保留抓包数据。当抓包数…...

taro 支付宝/微信小程序/h5 上传 - base64的那些事儿

支付宝小程序临时path转base64 - 基础库2.0以下 function getImageInfo(path) {return new Promise(resolve > {my.getImageInfo({src: path,success: res > {resolve(res)}})}) } export async function getBase64InAlipay({ id, path }) {const { width, height } awa…...

java之SpringBoot基础、前后端项目、MyBatisPlus、MySQL、vue、elementUi

文章目录 前言JC-1.快速上手SpringBootJC-1-1.SpringBoot入门程序制作&#xff08;一&#xff09;JC-1-2.SpringBoot入门程序制作&#xff08;二&#xff09;JC-1-3.SpringBoot入门程序制作&#xff08;三&#xff09;JC-1-4.SpringBoot入门程序制作&#xff08;四&#xff09;…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时&#xff0c;可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案&#xff1a; 1. 检查电源供电问题 问题原因&#xff1a;多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

ABAP设计模式之---“简单设计原则(Simple Design)”

“Simple Design”&#xff08;简单设计&#xff09;是软件开发中的一个重要理念&#xff0c;倡导以最简单的方式实现软件功能&#xff0c;以确保代码清晰易懂、易维护&#xff0c;并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计&#xff0c;遵循“让事情保…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中&#xff0c;车辆不再仅仅是传统的交通工具&#xff0c;而是逐步演变为高度智能的移动终端。这一转变的核心支撑&#xff0c;来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒&#xff08;T-Box&#xff09;方案&#xff1a;NXP S32K146 与…...

用鸿蒙HarmonyOS5实现中国象棋小游戏的过程

下面是一个基于鸿蒙OS (HarmonyOS) 的中国象棋小游戏的实现代码。这个实现使用Java语言和鸿蒙的Ability框架。 1. 项目结构 /src/main/java/com/example/chinesechess/├── MainAbilitySlice.java // 主界面逻辑├── ChessView.java // 游戏视图和逻辑├──…...

ubuntu系统文件误删(/lib/x86_64-linux-gnu/libc.so.6)修复方案 [成功解决]

报错信息&#xff1a;libc.so.6: cannot open shared object file: No such file or directory&#xff1a; #ls, ln, sudo...命令都不能用 error while loading shared libraries: libc.so.6: cannot open shared object file: No such file or directory重启后报错信息&…...

Qwen系列之Qwen3解读:最强开源模型的细节拆解

文章目录 1.1分钟快览2.模型架构2.1.Dense模型2.2.MoE模型 3.预训练阶段3.1.数据3.2.训练3.3.评估 4.后训练阶段S1: 长链思维冷启动S2: 推理强化学习S3: 思考模式融合S4: 通用强化学习 5.全家桶中的小模型训练评估评估数据集评估细节评估效果弱智评估和民间Arena 分析展望 如果…...

java+webstock

maven依赖 <dependency><groupId>org.java-websocket</groupId><artifactId>Java-WebSocket</artifactId><version>1.3.5</version></dependency><dependency><groupId>org.apache.tomcat.websocket</groupId&…...