pytorch异常——RuntimeError:Given groups=1, weight of size..., expected of...
文章目录
- 省流
- 异常报错
- 异常截图
- 异常代码
- 原因解释
- 修正代码
- 执行结果
省流
-
nn.Conv2d 需要的输入张量格式为 (batch_size, channels, height, width),但您的示例输入张量 x 是 (batch_size, height, width, channels)。因此,需要对输入张量进行转置。
-
注意,TensorFlow使用"NHWC"(批次、高度、宽度、通道)格式,而PyTorch使用"NCHW"(批次、通道、高度、宽度)格式
异常报错
RuntimeError: Given groups=1, weight of size [16, 3, 2, 3],
expected input[8, 65, 66, 3] to have 3 channels,
but got 65 channels instead
异常截图
异常代码
def down_shifted_conv2d(x , num_filters , filters_size = [2,3],stride = 1, **kwargs):batch_size,H,W,channels = x.shapepadding = (0,0,int(((filters_size[1]) - 1) / 2 ) , int((int(filters_size[1]) - 1) / 2),int(filters_size[0]) - 1 , 0,0,0)x_paded = nn.functional.pad(x, padding)print(x_paded.shape)conv_layer = nn.Conv2d(in_channels=channels, out_channels=num_filters, kernel_size=filters_size,stride=stride, **kwargs)return conv_layer(x_paded)
# Example usage
x = torch.randn(8, 64, 64, 3) # Example input with batch size 8, height and width 64, and 3 channels
num_filters = 16
output = down_shifted_conv2d(x, num_filters)
print(output.shape)
原因解释
-
在pytorch中,“nn.Conv2d”需要输入的张量格式为(batch_size,channels,height,width),原图输入的x的格式是(batch_size,height ,weight,channel)所以需要对tensor进行转置。
-
矩阵交换维度的函数permute,按照编号,将新的顺序填好即可。
def down_shifted_conv2d(x , num_filters , filters_size = [2,3], stride = 1, **kwargs):batch_size, H, W, channels = x.shape# Transpose the input tensor to (batch_size, channels, height, width)x = x.permute(0, 3, 1, 2)# Paddingpadding = (int((filters_size[1] - 1) / 2), int((filters_size[1] - 1) / 2),filters_size[0] - 1, 0)x_paded = F.pad(x, padding)
修正代码
def down_shifted_conv2d(x , num_filters , filters_size = [2,3],stride = 1, **kwargs):batch_size,H,W,channels = x.shape# 按照顺序对4个维度分别进行填充padding = (0,0,int(((filters_size[1]) - 1) / 2 ) , int((int(filters_size[1]) - 1) / 2),int(filters_size[0]) - 1 , 0,0,0)x_paded = nn.functional.pad(x, padding)x_paded = x_paded.permute(0,3,1,2)# 进行卷积conv_layer = nn.Conv2d(in_channels=channels, out_channels=num_filters, kernel_size=filters_size,stride=stride, **kwargs)return conv_layer(x_paded)
# Example usage
x = torch.randn(8, 64, 64, 3)
num_filters = 16
output = down_shifted_conv2d(x, num_filters)
print(output.shape)
执行结果
相关文章:

pytorch异常——RuntimeError:Given groups=1, weight of size..., expected of...
文章目录 省流异常报错异常截图异常代码原因解释修正代码执行结果 省流 nn.Conv2d 需要的输入张量格式为 (batch_size, channels, height, width),但您的示例输入张量 x 是 (batch_size, height, width, channels)。因此,需要对输入张量进行转置。 注意…...

【FPGA项目】沙盘演练——基础版报文收发
第1个虚拟项目 前言 点灯开启了我们的FPGA之路,那么我们来继续沙盘演练。 用一个虚拟项目,来入门练习,以此步入数字逻辑的…...

【C++技能树】继承概念与解析
Halo,这里是Ppeua。平时主要更新C,数据结构算法,Linux与ROS…感兴趣就关注我bua! 继承 0. 继承概念0.1 继承访问限定符 1. 基类和派生类对象赋值兼容转换2. 继承中的作用域3. 派生类中的默认成员函数4.友元5.继承中的静态成员6.菱…...

计算机网络 第二节
目录 一,计算机网络的分类 1.按照覆盖范围分 2.按照所属用途分 二,计算机网络逻辑组成部分 1.核心部分 (通信子网) 1.1电路交换 1.2 分组交换 两种方式的特点 重点 2.边缘部分 (资源子网) 进程通信的方…...

无涯教程-机器学习 - 矩阵图函数
相关性是有关两个变量之间变化的指示,在前面的章节中,无涯教程讨论了Pearson的相关系数以及相关的重要性,可以绘制相关矩阵以显示哪个变量相对于另一个变量具有较高或较低的相关性。 在以下示例中,Python脚本将为Pima印度糖尿病数…...
Redis 高可用与集群
Redis 高可用与集群 虽然 Redis 可以实现单机的数据持久化,但无论是 RDB 也好或者 AOF 也好,都解决 不了单点宕机问题,即一旦单台 redis 服务器本身出现系统故障、硬件故障等问题后, 就会直接造成数据的丢失,因此需要…...
修改文件名后Git仓上面并没有修改
场景: 我在本地将文件夹名称由Group → group ,执行git push 后,远程分支上的文件名称并没有修改。 原因: 是我绕过了git 直接使用了系统的重命名操作。 在 Git 中,对于已经存在的文件或文件夹进行大小写重命名是一个敏感的操作…...

Linux 信号
目录 基本概念信号的分类可靠信号与不可靠信号实时信号与非实时信号 常见信号与默认行为进程对信号的处理signal()函数sigaction()函数 向进程发送信号kill()函数raise() alarm()和pause()函数alarm()函数pause()函数 信号集初始化信号集测试信号是否在信号集中 获取信号的描述…...

深入探讨梯度下降:优化机器学习的关键步骤(二)
文章目录 🍀引言🍀eta参数的调节🍀sklearn中的梯度下降 🍀引言 承接上篇,这篇主要有两个重点,一个是eta参数的调解;一个是在sklearn中实现梯度下降 在梯度下降算法中,学习率…...
高频算法面试题
合并两个有序数组 const merge (nums1, nums2) > {let p1 0;let p2 0;const result [];let cur;while (p1 < nums1.length || p2 < nums2.length) {if (p1 nums1.length) {cur nums2[p2];} else if (p2 nums2.length) {cur nums1[p1];} else if (nums1[p1] &…...

Hive-启动与操作(2)
🥇🥇【大数据学习记录篇】-持续更新中~🥇🥇 个人主页:beixi 本文章收录于专栏(点击传送):【大数据学习】 💓💓持续更新中,感谢各位前辈朋友们支持…...

css transition 指南
css transition 指南 在本文中,我们将深入了解 CSS transition,以及如何使用它们来创建丰富、精美的动画。 基本原理 我们创建动画时通常需要一些动画相关的 CSS。 下面是一个按钮在悬停时移动但没有动画的示例: <button class"…...
LeetCode 面试题 02.05. 链表求和
文章目录 一、题目二、C# 题解 一、题目 给定两个用链表表示的整数,每个节点包含一个数位。 这些数位是反向存放的,也就是个位排在链表首部。 编写函数对这两个整数求和,并用链表形式返回结果。 点击此处跳转题目。 示例: 输入&a…...

一米脸书营销软件
功能优势 JOIN ADVANTAGE HOME PAGE MARKETING 公共主页营销 可同时对多个账户公共主页评论,点赞等 可批量邀请多个好友对Facebook公共主页进行评论点赞等,也可批量登录小号对自己公共主页进行点赞。 GROUP MARKETING 小组营销 可批量针对不同账户进行…...

vue 根据数值判断颜色
1.首先style样式给两种颜色 用:class 三元运算符判断出一种颜色 第一步:在style里边设置两种颜色 .green{color: green; } .orange{color: orangered; }在取数据的标签 里边 判断一种颜色 :class"item.quote.current >0 ?orange: green"<van-gri…...
Hugging Face 实战系列 总目录
PyTorch 深度学习 开发环境搭建 全教程 Transformer:《Attention is all you need》 Hugging Face简介 1、Hugging Face实战-系列教程1:Tokenizer分词器(Transformer工具包/自然语言处理) Hungging Face实战-系列教程1:Tokenize…...

国标视频云服务EasyGBS国标视频平台迁移服务器后无法启动的问题解决方法
国标视频云服务EasyGBS支持设备/平台通过国标GB28181协议注册接入,并能实现视频的实时监控直播、录像、检索与回看、语音对讲、云存储、告警、平台级联等功能。平台部署简单、可拓展性强,支持将接入的视频流进行全终端、全平台分发,分发的视频…...
HTML <th> 标签
实例 普通的 HTML 表格,包含两行两列: <table border="1"><tr><th>Company</th><th>Address</th></tr><tr><td>Apple, Inc.</td><td>1 Infinite Loop Cupertino, CA 95014</td></tr…...
HTTP/1.1协议中的响应报文
2023年8月30日,周三下午 目录 概述响应报文示例详述 概述 HTTP/1.1协议的响应报文由以下几个部分组成: 状态行(Status Line)响应头部(Response Headers)空行(Blank Line)响应体&a…...
TDengine函数大全-选择函数
以下内容来自 TDengine 官方文档 及 GitHub 内容 。 以下所有示例基于 TDengine 3.1.0.3 TDengine函数大全 1.数学函数 2.字符串函数 3.转换函数 4.时间和日期函数 5.聚合函数 6.选择函数 7.时序数据库特有函数 8.系统函数 选择函数 TDengine函数大全BOTTOMFIRSTINTERPLASTLAS…...

【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...
JDK 17 新特性
#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持,不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的ÿ…...
MySQL账号权限管理指南:安全创建账户与精细授权技巧
在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则…...
QT3D学习笔记——圆台、圆锥
类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体(对象或容器)QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质(定义颜色、反光等)QFirstPersonC…...
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的----NTFS源代码分析--重要
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的 第一部分: 0: kd> g Breakpoint 9 hit Ntfs!ReadIndexBuffer: f7173886 55 push ebp 0: kd> kc # 00 Ntfs!ReadIndexBuffer 01 Ntfs!FindFirstIndexEntry 02 Ntfs!NtfsUpda…...

给网站添加live2d看板娘
给网站添加live2d看板娘 参考文献: stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下,文章也主…...

mac:大模型系列测试
0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何,是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试,是可以跑通文章里面的代码。训练速度也是很快的。 注意…...