当前位置: 首页 > news >正文

论文阅读_医疗知识图谱_GraphCare

英文名称: GraphCare: Enhancing Healthcare Predictions with Open-World Personalized Knowledge Graphs
中文名称: GraphCare:通过开放世界的个性化知识图增强医疗保健预测
文章: http://arxiv.org/abs/2305.12788
代码: https://github.com/pat-jj/GraphCare
作者: Pengcheng Jiang, Cao Xiao, Adam Cross, Jimeng Sun, 伊利诺伊大学
日期: 2023-05-22

1 读后感

来自 230825 学习会小丁分享

之前做医疗知识图谱和医疗预测时,最困难的问题包括:

  • 如何结合现有的数据和知识
  • 非结构化的文本类知识如何与数据结合
  • 知识图结构如何设计,如何使用
  • 如何引入时序的逻辑
  • 如何使用大模型的知识和常识

不仅医疗领域,这些问题几乎存在于所有领域的建模。论文 GraphCare 对此进行了探索。这里只展示了不同知识图的优化效果,实际工作中,知识图生成的患者描述特征还可以与患者的检查,检验信息结合,使模型达到更优的效果。

2 介绍

文章主要针对的问题是:如何结合 患者情况医疗知识 做出医疗预测。这里的医疗知识来自知识图谱,文章提出的改进主要针对知识图谱部分。包括以下三点:

  • 使用大模型中的知识填充图谱中的知识盲区(题目中的 Open-world 概念)。
  • 设计了针对个人的知识图谱结构。
  • 提出了双向注意力增强 (BAT) 图神经网络 (GNN) 。
    数据使用 MIMIC 3/4,主要针对:死亡率、再入院、住院时间和药物建议 进行预测,与GNN相比几种预测的AUROC均有提升,且使用更少数据就能建模。

3 方法

3.1 生成特定概念的知识图

这里的特定概念指的是医疗代码 e ∈ {c, p, d},三个字母分别代表:诊断、治疗和药物。对每个医疗代码,提取其知识图 Ge = (Ve, Ee),其中V是结点 E是边。

3.1.1 建图

使用两种方法建图:

  • 使用自然语言大模型构建
    调用大模型,主要技术是设计提示模板,解析模型的返回结果,以及填充图。模板由三部分组成:指令(让模型做什么)、示例(返回结果什么样)、提示词(具体见附录C.1);返回得到头实体,关系,尾实体的三元组;对于每个医疗代码,运行χ次,构造其知识图。
  • 从现有知识图中取子图构建
    为更好利用现有知识和知识图,通过子图采样提取医学代码的特定概念图。先识别现有生物医学知识图谱中与医学代码 e 对应的实体,然后随机采样源自实体的 κ 跳子图(具体见附录C.2)。

3.1.2 对点和边聚类

使用文本构建的图,常会出现同概念对应多个描述的问题,这里使用聚类方法,合并概念。通过大语言模型,可以得到文本的嵌入,使用嵌入分别对结点和边聚类。

对全局图中相似的节点和边进行分组所有概念(如图-1所示)。经过聚类后,将原始图 G 中的节点 V 和边 E 映射到新的节点 V′ 和边 E′,获得新的全局图 G′ = (V′ , E′ ),并为每个医疗代码创建一个新的图 G′e = (V′e, E′e) ⊂ G′。节点嵌入和边嵌入由每个簇中的平均词嵌入初始化。

4 生成患者知识图

这里分两个维度描述患者:患者医疗代码(得了什么病,不只一种病),患者的多次就诊。
针对每位患者,建立患者节点 P,并将其连接到图中的直接医疗代码。患者的个性化 KG 可以表示为 Gpat = (Vpat, Epat),其中 Vpat = P ∪ {V′e1 , V′e2 , …, V′eω } ;由于患者可能多次就诊,将患者 i 的访问子图可以表示为 Gpat(i) = {Gi,1, Gi,2, …, Gi,J } = {(Vi,1, Ei,1), (Vi,2, Ei,2), …, (Vi,J , Ei,J )} 。

4.1 双向注意力增强图神经网络

图神经网络最终的输出一般是用向量(数组)表征的结点,比如最终用数组描述每位患者的情况,然后将患者作为实例,数组作为特征 X,以最终目标(如:是否死亡作)为 y 代入模型训练。以此实现对不同任务的预测。如果在训练模型时加入患者的其它特征,如实验室检验等数值型数据,模型就同时支持了患者数据和知识。

图神经网络的原理是聚合邻域节点信息来表示当前节点,从而学习图中的关系。相对于一般的 GNN 神经网络,文中提出了双向注意力增强网络(Bi-attention Augmented (BAT) GNN) 机制。具体方法如下:

  • 首先将词嵌入转换到隐藏嵌入减少节点和边嵌入的大小,以提高模型的效率并处理稀疏问题。
  • 两个注意力权重:一个关注子图,一个关注子图中的结点:
    α i , j , 1 , … , α i , j , M = Softmax ⁡ ( W α g i , j + b α ) , β i , 1 , … , β i , N = λ ⊤ Tanh ⁡ ( w β ⊤ G i + b β ) , where  λ = [ λ 1 , … , λ N ] , \begin{array}{l} \alpha_{i, j, 1}, \ldots, \alpha_{i, j, M}=\operatorname{Softmax}\left(\mathbf{W}_{\alpha} \mathbf{g}_{i, j}+\mathbf{b}_{\alpha}\right), \\ \beta_{i, 1}, \ldots, \beta_{i, N}=\lambda^{\top} \operatorname{Tanh}\left(\mathbf{w}_{\beta}^{\top} \mathbf{G}_{i}+\mathbf{b}_{\beta}\right), \quad \text { where } \quad \boldsymbol{\lambda}=\left[\lambda_{1}, \ldots, \lambda_{N}\right], \end{array} αi,j,1,,αi,j,M=Softmax(Wαgi,j+bα),βi,1,,βi,N=λTanh(wβGi+bβ), where λ=[λ1,,λN],
    患者 i 第 j 个访问子图中第 k 个节点的节点级注意力权重为 αi,j,k,患者 i 的第 j 次就诊,表示为 βi,j;g 描述 患者 i 第 j 次就诊是否涉及实体 k ,M是全局中的结点数,N是最大就诊次数;W和b是待学习的参数;λ是衰减系数,用于描述:就诊次数时间越接近,重要性越高。

参数的初始化利用了大模型返回的词嵌入,Wα的初值根据节点嵌入与目标(如死亡)的cosine距离设定,即节点描述与目标词义越相近,权重越高。最终计算出各个节点的隐藏层表示 h。
h i G pat  = MEAN ⁡ ( ∑ j = 1 J ∑ k = 1 K j h i , j , k ( L ) ) , h i P = MEAN ⁡ ( ∑ j = 1 J ∑ k = 1 K j 1 i , j , k Δ h i , j , k ( L ) ) , z i graph  = MLP ⁡ ( h i G pat  ) , z i node  = MLP ⁡ ( h i P ) z i joint  = MLP ⁡ ( h i G pat  ⊕ h i P ) , \begin{array}{l} \mathbf{h}_{i}^{G_{\text {pat }}}=\operatorname{MEAN}\left(\sum_{j=1}^{J} \sum_{k=1}^{K_{j}} \mathbf{h}_{i, j, k}^{(L)}\right), \quad \mathbf{h}_{i}^{\mathcal{P}}=\operatorname{MEAN}\left(\sum_{j=1}^{J} \sum_{k=1}^{K_{j}} \mathbb{1}_{i, j, k}^{\Delta} \mathbf{h}_{i, j, k}^{(L)}\right), \\ \mathbf{z}_{i}^{\text {graph }}=\operatorname{MLP}\left(\mathbf{h}_{i}^{G_{\text {pat }}}\right), \quad \mathbf{z}_{i}^{\text {node }}=\operatorname{MLP}\left(\mathbf{h}_{i}^{\mathcal{P}}\right) \quad \mathbf{z}_{i}^{\text {joint }}=\operatorname{MLP}\left(\mathbf{h}_{i}^{G_{\text {pat }}} \oplus \mathbf{h}_{i}^{\mathcal{P}}\right), \end{array} hiGpat =MEAN(j=1Jk=1Kjhi,j,k(L)),hiP=MEAN(j=1Jk=1Kj1i,j,kΔhi,j,k(L)),zigraph =MLP(hiGpat ),zinode =MLP(hiP)zijoint =MLP(hiGpat hiP),
这里又针对每位患者计算 hiG和HiP,J是就诊次数,K是访问的节点数,1iΔ,j,k ∈ {0, 1} 是一个二进制标签,指示结点 vi,j,k 是否对应于患者 i 的直接医疗代码。我理解:前者是对与患者相关的所有节点取平均 ,后者是对与患者直接相关的医疗代码取平均。最终通过组合,使用z描述患者。

4.2 训练和预测

对于每位患者,考虑其 t 次就诊的数据:{(x1), (x1, x2), . . . , (x1, x2, . . . , xt)}

  • 死亡率预测:利用患者前几次就诊预测未来是否死亡。
  • 再入院预测:根据患者前几次住院情况预测患者 15 天以内的再入院。
  • 住ICU时长预测:将问题定义为多分类,类别为: 1天内,1天,2天 … 7天,一到两周,两周以上。根据本次及前几次就诊情况,判断住ICU时长。
  • 推荐药物:根据本次及前次就诊,预测本次用药,用药可能为多种,因此定义为多标签问题。

5 实验

  • EHR 数据,并使用公开的 MIMIC-III / MIMIC-IV 数据集。
  • 构建知识图谱,使用 GPT-4 作为大模型,UMLS-KG 作为现有的大型生物医学知识图。
  • 词嵌入,使用了 GPT-3 嵌入模型。

相关文章:

论文阅读_医疗知识图谱_GraphCare

英文名称: GraphCare: Enhancing Healthcare Predictions with Open-World Personalized Knowledge Graphs 中文名称: GraphCare:通过开放世界的个性化知识图增强医疗保健预测 文章: http://arxiv.org/abs/2305.12788 代码: https://github.com/pat-jj/GraphCare 作…...

Android 蓝牙开发( 四 )

前言 上一篇文章给大家分享了Kotlin版的Android蓝牙的基础知识和基础用法,不过上一篇都是一些零散碎片化的程序,,这一篇给大家分享Android蓝牙开发实战项目KotlinCompose的初步使用 效果演示 : Android Compose 蓝牙开发 Android蓝牙实战开发…...

涂鸦智能携手亚马逊云科技 共建“联合安全实验室” 为IoT发展护航

2023年8月31日,全球化IoT开发者平台涂鸦智能(NYSE: TUYA,HKEX: 2391)在“2023亚马逊云科技re:Inforce中国站”大会宣布与全球领先的云计算公司亚马逊云科技共同成立“联合安全实验室”,旨在加强IoT行业的安全合规能力与…...

Oracle21C--Windows卸载与安装

卸载方法: (1)WinR,输入services.msc,打开服务,把Oracle相关的服务全部停止运行(重要) (2)WinR,输入regedit,打开注册表,删除Oracle开…...

关于 MySQL、PostgresSQL、Mariadb 数据库2038千年虫问题

MySQL 测试时间:2023-8 启动MySQL服务后,将系统时间调制2038年01月19日03时14分07秒之后的日期,发现MySQL服务自动停止。 根据最新的MySQL源码(mysql-8.1.0)分析,sql/sql_parse.cc中依然存在2038年千年虫…...

Linux - Docker 安装使用 常用命令 教程

Docker 官方文档地址: Get Started | Docker 中文参考手册: https://docker_practice.gitee.io/zh-cn/ 1.什么是 Docker 1.1 官方定义 最新官网首页 # 1.官方介绍 - We have a complete container solution for you - no matter who you are and where you are on your contain…...

AtCoder Beginner Contest 318 G - Typical Path Problem 题解

G - Typical Path Problem 题目大意 给定一张 N N N 个点、 M M M 条边的简单无向图 G G G 和三个整数 A , B , C A,B,C A,B,C。 是否存在一条从顶点 A A A 到 C C C,且经过 B B B 的简单路径? 数据范围: 3 ≤ N ≤ 2 1 0 5 3\le …...

21.4 CSS 盒子模型

1. 边框样式 border-style属性: 指定元素的边框样式.常用属性值: - none: 无边框(默认值). - solid: 实线边框. - dotted: 点状边框. - dashed: 虚线边框. - double: 双线边框. - groove: 凹槽状边框. - ridge: 脊状边框. - inset: 内阴影边框. - outset: 外阴影边框.这些值可…...

MybatisPlus入门

MybatisPlus入门 1.MyBatis-Plus1.1 ORM介绍1.2 MyBatis-Plus介绍 2.代码链接数据库2.1 创建项目2.2 添加依赖2.3 链接数据库2.3.1 准备数据库2.3.2 链接数据库2.3.3 创建实体类 2.4 创建Mapper层2.5 创建Controller层2.6 浏览器访问测试 MybatisPlus官方网站: 官网…...

飞腾平台芯片测试固件(SFW)和开机启动log

一、说两句 最近公司飞腾产品越来越多了,FT-2000/4的D2000的X100的,最近又新出了E2000。越来越多新来的小孩儿开始加入到飞腾的调测试中,那么在他们实际的调试中会遇到很多的问题。在固件启动阶段有的板卡会有一些异常,有时我们需…...

【大数据实训】基于Hive的北京市天气系统分析报告(二)

博主介绍:✌全网粉丝6W,csdn特邀作者、博客专家、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于大数据技术领域和毕业项目实战✌ 🍅文末获取项目联系🍅 目录 1. 引言 1.1 项目背景 1 1.2 项目意义 1 2.…...

WPF列表样式

WPF的数据绑定系统自动生成列表项对象,为单个项应用所需的样式不是很容易。解决方案是ItemContainerStyle 属性。如果设置了ItemContainerStyle 属性,当创建列表项时,列表控件会将其向下传递给每个项。对于ListBox控件,每个项有Li…...

Android逆向学习(二)vscode进行双开与图标修改

Android逆向学习(二)vscode进行双开与图标修改 写在前面 这其实应该还是吾爱的第一个作业,但是写完上一个博客的时候已经比较晚了,如果继续敲机械键盘吵到室友,我怕我看不到明天的太阳,所以我决定分成两篇…...

一个基于YAPI接口生产代码的开源工具

前后端分离的开发模式是一种趋势,但如果缺少好的开发工具跟管理模式,会使得前后端开发人员相互等待,扯皮等问题。从而影响项目的交付进度。 通过实践摸索,YAPI是一款很适合前后端分离开发的协助工具。它以项目为维度,可…...

Redis 缓存穿透击穿和雪崩

一、说明 Redis 缓存的使用,极大的提升了应用程序的性能和效率,特别是数据查询方面。但同时,它也带来了一些问题。其中,最要害的问题,就是数据的一致性问题,从严格意义上讲,这个问题无解。如果对…...

在windows上配置ninja环境

ninja使用并行任务来编译工程,比cmake编译快了一个数量级,是谷歌在2010年为了提高cmake的编译速度而开发一款编译工具。下面介绍在windows上配置ninja环境。 1 下载ninja ninja官网地址: https://github.com/ninja-build/ninja/releases   …...

③matlab向量和矩阵

目录 手动输入数组 创建等间距向量 数组创建函数 手动输入数组 1.背景 单个称为标量的数值实际上是一个 11 数组,也即它包含 1 行 1 列。 任务 创建一个名为 x 并且值为 4 的变量。 2.您可以使用方括号创建包含多个元素的数组。 x [3 5] x 3 5 任务 …...

一、了解[mysql]索引底层结构和算法

目录 一、索引1.索引的本质2.mysql的索引结构 二、存储引擎1.MyISAM2.InnoDB3.为什么建议InnoDB表要建立主键并且推荐int类型自增?4.innodb的主键索引和非主键索引(二级索引)区别5.联合索引 一、索引 1.索引的本质 索引:帮助mysql高效获取数…...

DockerFile常用命令

以下是常见的Dockerfile命令: FROM:FROM命令用于指定基础镜像。基础镜像是构建镜像的起点。例如,FROM ubuntu:latest表示使用最新版本的Ubuntu作为基础镜像。 MAINTAINER:MAINTAINER命令用于指定镜像的维护者信息。一般格式为&am…...

Android 动画之插值器PathInterpolator

Android 的View动画、属性动画都可以设置动画插值器,以此来实现不同的动画效果。 这篇文章 Android View动画整理 有介绍各种插值器的效果,这一篇专访 PathInterpolator 。 参考官网 添加曲线动作 , PathInterpolator 基于 贝塞尔曲线 或 …...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...

Java多线程实现之Thread类深度解析

Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...

【Veristand】Veristand环境安装教程-Linux RT / Windows

首先声明,此教程是针对Simulink编译模型并导入Veristand中编写的,同时需要注意的是老用户编译可能用的是Veristand Model Framework,那个是历史版本,且NI不会再维护,新版本编译支持为VeriStand Model Generation Suppo…...

WebRTC调研

WebRTC是什么,为什么,如何使用 WebRTC有什么优势 WebRTC Architecture Amazon KVS WebRTC 其它厂商WebRTC 海康门禁WebRTC 海康门禁其他界面整理 威视通WebRTC 局域网 Google浏览器 Microsoft Edge 公网 RTSP RTMP NVR ONVIF SIP SRT WebRTC协…...

Mysql故障排插与环境优化

前置知识点 最上层是一些客户端和连接服务,包含本 sock 通信和大多数jiyukehuduan/服务端工具实现的TCP/IP通信。主要完成一些简介处理、授权认证、及相关的安全方案等。在该层上引入了线程池的概念,为通过安全认证接入的客户端提供线程。同样在该层上可…...

在Zenodo下载文件 用到googlecolab googledrive

方法:Figshare/Zenodo上的数据/文件下载不下来?尝试利用Google Colab :https://zhuanlan.zhihu.com/p/1898503078782674027 参考: 通过Colab&谷歌云下载Figshare数据,超级实用!!&#xff0…...

Selenium 查找页面元素的方式

Selenium 查找页面元素的方式 Selenium 提供了多种方法来查找网页中的元素,以下是主要的定位方式: 基本定位方式 通过ID定位 driver.find_element(By.ID, "element_id")通过Name定位 driver.find_element(By.NAME, "element_name"…...

C# WPF 左右布局实现学习笔记(1)

开发流程视频: https://www.youtube.com/watch?vCkHyDYeImjY&ab_channelC%23DesignPro Git源码: GitHub - CSharpDesignPro/Page-Navigation-using-MVVM: WPF - Page Navigation using MVVM 1. 新建工程 新建WPF应用(.NET Framework) 2.…...

Linux中INADDR_ANY详解

在Linux网络编程中&#xff0c;INADDR_ANY 是一个特殊的IPv4地址常量&#xff08;定义在 <netinet/in.h> 头文件中&#xff09;&#xff0c;用于表示绑定到所有可用网络接口的地址。它是服务器程序中的常见用法&#xff0c;允许套接字监听所有本地IP地址上的连接请求。 关…...