自定义类型:结构体、枚举、联合
目录
结构体
结构体的基础知识
结构的声明
特殊的声明
结构体的自引用
结构体变量的定义和初始化
结构体内存对齐
修改默认对齐数
结构体传参
位段
什么是位段
位段的内存分配
位段的跨平台问题
位段的应用
枚举
枚举类型的定义
枚举的优点
联合体(共用体)
联合类型的定义
联合的特点
联合体大小的计算
结构体
结构体的基础知识
结构是一些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量。
结构的声明
struct tag
{member-list;
}variable-list;
例如,描述一个学生:
struct Stu
{char name[20];//名字int age;//年龄char sex[5];//性别char id[20];//学号
}; //分号不能丢
特殊的声明
在声明结构的时候,可以不完全的声明。比如:
//匿名结构体类型
struct
{int a;char b;float c;
}x;struct
{int a;char b;float c;
}arr[20],*p;
上面的两个结构在声明的时候省略掉了结构体标签(tag)。
那么问题来了?
//在上面代码的基础上,下面的代码合法吗?
p=&x;
警告:编译器会把上面的两个声明当成完全不同的两个类型,所以是非法的。
结构体的自引用
在结构中包含一个类型为该结构本身的成员是否可以呢?
struct Node
{int data;struct Node next;
};
//可行否?
//如果可以,那sizeof(struct Node)是多少?
//答:不可以
正确的自引用方式:
struct Node
{int data;struct Node* next;
};
typedef struct
{int data;Node* next;
}Node;
//这样写代码不可以!//解决方案
typedef struct Node
{int data;struct Node* next;
}Node;
结构体变量的定义和初始化
有了结构体类型,那如何定义变量,其实很简单。
struct Node
{int data;struct Node* next;
};typedef struct Node
{int data;struct Node* next;
}Node;struct Point
{int x;int y;
}p1;struct Point p2;struct Point p3 = { 1,2 };struct Stu
{char name[15];int age;
};struct Stu s = { "zhangsan",20 };struct Node
{int data;struct Point p;struct Node* next;
}n1 = { 10,{1,2},NULL };//结构体嵌套初始化struct Node n2 = { 20,{5,6},NULL };//结构体嵌套初始化
结构体内存对齐
我们已经掌握了结构体的基本使用了。
现在我们深入讨论一个问题:计算结构体的大小。
这也是一个特别热门的考点: 结构体内存对齐
#include <stddef.h>
#include <stdio.h>
struct S1
{char c1;int i;char c2;
};struct S2
{int i;char c1;char c2;
};int main()
{struct S1 s1 = { 0 };//printf("%d\n",sizeof(struct S1));//printf("%d\n", sizeof(struct S2));printf("%d\n",offsetof(struct S1,c1));//可以计算结构体的成员相较于结构体起始位置的偏移量printf("%d\n", offsetof(struct S1, i));printf("%d\n", offsetof(struct S1, c2));return 0;
}
从上面的现象分析,我们发现结构成员不是按照顺序在内存中连续存放的,而是有一定的对齐规则。
结构体内存的对齐规则:
1.结构体的第一个成员永远放在相较于结构体变量起始位置的偏移量为0的位置。
2.从第二个成员开始,往后的每个成员都要对齐到某个对齐数的整数倍处。
对齐数:结构体成员自身的大小和和默认对齐数的较小值。
VS上默认对齐数是8.
gcc没有默认对齐数,对齐数就是结构体成员的自身大小。
3.结构体的总大小,必须是最大对齐数的整数倍。
4.如果嵌套了结构体的情况,嵌套的结构体对齐到自身的最大对齐数的整数倍,结构体的整体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍。
练习1
struct S1
{char c1;int i;char c2;};
int main()
{printf("%d\n",sizeof(struct S1));return 0;
}
12
练习2
struct S2
{char c1;char c2;int i;
};
int main()
{printf("%d\n", sizeof(struct S2));return 0;
}
8
练习3
struct S3
{double d;char c;int i;
};
printf("%d\n", sizeof(struct S3))
16
练习4--结构体嵌套问题
struct S3
{double d;char c;int i;
};struct S4
{char c1;struct S3 s3;double d;
};
printf("%d\n", sizeof(struct S4));
32
为什么存在内存对齐?
大部分的参考资料都是如是说的:
1. 平台原因(移植原因):不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。
2. 性能原因:数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。
总体来说:结构体的内存对齐是拿空间来换取时间的做法。
那在设计结构体的时候,我们既要满足对齐,又要节省空间,如何做到:
让占用空间小的成员尽量集中在一起。
//例如:
struct S1
{char c1;int i;char c2;
};
struct S2
{char c1;char c2;int i;
};
S1和S2类型的成员一模一样,但是S1和S2所占空间的大小有了一些区别。
修改默认对齐数
使用预处理指令#pragma,可以改变我们的默认对齐数。
#include <stdio.h>
#pragma pack(8)//设置默认对齐数为8
struct S1
{char c1;int i;char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认#pragma pack(1)//设置默认对齐数位1struct S2
{char c1;int i;char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认
int main()
{printf("%d\n",sizeof(struct S1));printf("%d\n", sizeof(struct S2));return 0;
}
12
6
结论:结构在对齐方式不合适的时候,我么可以自己更改默认对齐数。
结构体传参
直接上代码
struct S
{int data[100];int num;
};//结构体传参
void print1(struct S tmp)
{printf("%d\n",tmp.num);
}
//指针传参
void print2(const struct S* ps)
{printf("%d\n", ps->num);
}int main()
{struct S s = { {1,2,3},100 };print1(s);//传结构体print2(&s);//传指针return 0;
}
上面的 print1 和 print2 函数哪个好些?
答案是:首选print2函数
原因:
函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
如果传递一个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的下降。
结论:结构体传参的时候,要传结构体的地址。
位段
结构体讲完就得讲讲结构体实现位段的能力。
什么是位段
位段的声明和结构是类似的,有两个不同:
1.位段的成员必须是 int、unsigned int 或signed int 。
2.位段的成员名后边有一个冒号和一个数字。
比如:
struct A
{int _a : 2;int _b : 5;int _c : 10;int _d : 30;
};
A就是一个位段类型。
那位段A的大小是多少?
8
位段的内存分配
1. 位段的成员可以是int unsigned int signed int 或者是 char(属于整形家族)类型
2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。
3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。
struct S
{char a : 3;char b : 4;char c : 5;char d : 4;
};int main()
{struct S s = { 0 };s.a = 10;s.b = 12;s.c = 3;s.d = 4;return 0;
}
空间是如何开辟的?
位段的跨平台问题
1. int 位段被当成有符号数还是无符号数是不确定的。
2. 位段中最大位的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机器会出问题。
3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。
4. 当一个结构包含两个位段,第二个位段成员比较大,无法容纳于第一个位段剩余的位时,是舍弃剩余的位还是利用,这是不确定的。
总结:跟结构相比,位段可以达到同样的效果,但是可以很好的节省空间,但是有跨平台的问题存在。
位段的应用
枚举
枚举顾名思义就是一一列举。把可能的取值一一列举。比如我们现实生活中:
一周的星期一到星期日是有限的7天,可以一一列举。
性别有:男、女、保密,也可以一一列举。
枚举类型的定义
enum Color//颜色
{RED,//0GREEN,//1BLUE//2
};
enum Sex//性别
{
MALE,
FEMALE,
SECRET
};
以上定义的 enum Day , enum Sex , enum Color 都是枚举类型。
{ }中的内容是枚举类型的可能取值,也叫枚举常量 。
这些可能取值都是有值的,默认从0开始,一次递增1,当然在定义的时候也可以赋初值。
例如:
enum Color//颜色
{RED=1,GREEN=2,BLUE=4
};
枚举的优点
我们可以使用 #define 定义常量,为什么非要使用枚举?
枚举的优点:
1. 增加代码的可读性和可维护性
2. 和#define定义的标识符比较枚举有类型检查,更加严谨。
3. 防止了命名污染(封装)
4. 便于调试
5. 使用方便,一次可以定义多个常量
enum Color
{RED=1,//0GREEN=2,//1BLUE=4//2
};
int main()
{enum Color c = GREEN;c = 5;//errreturn 0;
}
联合体(共用体)
联合类型的定义
联合也是一种特殊的自定义类型,这种类型定义的变量也包含一系列的成员,特征是这些成员公用同一块空间(所以联合也叫共用体)。
//联合变量的声明
union Un
{char c;int i;
};
int main()
{//联合变量的定义union Un un;//计算变量的大小printf("%d\n",sizeof(un));return 0;
}
联合的特点
联合的成员是共用同一块内存空间的,这样一个联合变量的大小,至少是最大成员的大小(因为联合至少得有能力保存最大的那个成员)。
union Un
{char c;int i;
};
int main()
{union Un un;printf("%p\n",&(un.i));printf("%p\n",&(un.c));return 0;
}
以下代码的输出结果是什么
union Un un;
un.i = 0x11223344;
un.c = 0x55;
printf("%x\n", un.i);
11223355
面试题:
判断当前计算机的大小端存储
int check_sys()
{union{int i;char c;}un = {.i=1};return un.c;
}
int main()
{int ret = check_sys();if (ret == 1)printf("小端\n");elseprintf("大端\n");return 0;
}
联合体大小的计算
联合的大小至少是最大成员的大小。
当最大成员大小不是最大对齐数的整数倍的时候,就要对齐到最大对齐数的整数倍。
union Un1
{char c[5];int i;
};union Un2
{short c[7];int i;
};int main()
{printf("%d\n",sizeof(union Un1));//8printf("%d\n", sizeof(union Un2));//16return 0;
}
相关文章:

自定义类型:结构体、枚举、联合
目录 结构体 结构体的基础知识 结构的声明 特殊的声明 结构体的自引用 结构体变量的定义和初始化 结构体内存对齐 修改默认对齐数 结构体传参 位段 什么是位段 位段的内存分配 位段的跨平台问题 位段的应用 枚举 枚举类型的定义 枚举的优点 联合体(共…...

如何使用ZIP方式安装MySQL:简单、快速、高效的安装方法
下载MySQL的zip文件:从官方网站 https://dev.mysql.com/downloads/mysql/ 下载适用于您的操作系统的MySQL zip压缩包。 版本介绍(zip一般选第ZIP Archive版本) “Windows (x86, 64-bit), ZIP Archive” 是MySQL的发布版本,提供了MySQL服务器和相关的工具…...

python嵌套循环
在 Python 中,你可以使用嵌套循环来创建双循环,也就是一个循环包含在另一个循环中。通常有两种类型的双循环:嵌套循环和同时迭代多个迭代器的循环。我会详细说明这两种情况。 1. 嵌套循环: 嵌套循环是指一个循环嵌套在另一个循环…...

一文速学-让神经网络不再神秘,一天速学神经网络基础(五)-最优化
前言 思索了很久到底要不要出深度学习内容,毕竟在数学建模专栏里边的机器学习内容还有一大半算法没有更新,很多坑都没有填满,而且现在深度学习的文章和学习课程都十分的多,我考虑了很久决定还是得出神经网络系列文章,…...

【AWS实验】 配置中转网关及对等连接
文章目录 实验概览目标实验环境任务 1:查看网络拓扑并创建基准任务 2:创建中转网关任务 3:创建中转网关挂载任务 4:创建中转网关路由表任务 4.1:创建路由表关联任务 4.2:创建路由传播 任务 5:更…...

47、springboot 的 国际化消息支持--就是根据浏览器选择的语言,项目上的一些提示信息根据语言的选择进行对应的显示
springboot的国际化也是基于spring mvc 的。 springboot 的 国际化消息支持–就是根据浏览器选择的语言,项目上的一些提示信息根据语言的选择进行对应的显示。 总结下国家化自动配置: 功能实现就是: 比如一个登录页面,我们在浏览…...

重要变更 | Hugging Face Hub 的 Git 操作不再支持使用密码验证
在 Hugging Face,我们一直致力于提升服务安全性,因此,我们将修改 Hugging Face Hub 的 Git 交互认证方式。 从 2023 年 10 月 1 日 开始,我们将不再接受密码作为命令行 Git 操作的认证方式。我们推荐使用更安全的认证方法…...

为什么删除Windows 11上的Bloatware可以帮助加快你的电脑速度
如果你感觉你的电脑迟钝,彻底清除软件会有所帮助,而且这个过程对Windows用户来说越来越容易。 微软正在使删除以前难以删除的其他预装Windows应用程序成为可能。专家表示,这项新功能可能会改变用户的游戏规则。 科技公司Infatica的主管Vlad…...

PCL点云处理之计算两条直线间最短连线的端点 (二百零三)
PCL点云处理之计算两条直线间最短连线的端点 (二百零三) 一、算法目的二、具体实现1.代码2.结果一、算法目的 条件:给定两条直线,直线采用直线上一点和直线方向来确定 要求:求两条直线间的最短连线线段,获取它的两个端点 具体的算法实现如下,提供了示例直线和计算结果进…...

纵行科技与山鹰绿能达成合作,提供物联网资产管理数据服务
近日,纵行科技与山鹰绿能宣布双方达成深度合作关系,纵行科技将为山鹰绿能提供专业的物联网技术服务,使用物联网技术帮助山鹰绿能对循环包装载具等资产进行在线管理和数字化运营。 据悉,山鹰绿能是一家由山鹰国际控股的全资子公司…...

【2511. 最多可以摧毁的敌人城堡数目】
来源:力扣(LeetCode) 描述: 给你一个长度为 n ,下标从 0 开始的整数数组 forts ,表示一些城堡。forts[i] 可以是 -1 ,0 或者 1 ,其中: -1 表示第 i 个位置 没有 城堡。…...

stm32f1xx单片机拦截中断源代码
这个是实现后的效果,可以看到已经没有中断的效果了 这个是拦截前的效果可以看到电平是在变化的 实现原理非常简单:一句话搞定: if(TIM2->CNTTIM2->ARR-5)TIM2->CNT-5; 以下是完整的代码:是用来补充说明和筹字数的 /* …...

C++(21):特殊工具与技术
控制内存分配 某些应用程序对内存分配有特殊需求,无法直接应用标准内存管理机制。需要自定义内存分配的细节。 重载 new 和 delete void* operator new(std::size_t size) {// 自定义内存分配逻辑void* ptr std::malloc(size);if (!ptr) {throw std::bad_alloc(…...

go读取yaml,json,ini等配置文件
实际项目中,要读取一些json等配置文件。今天就来说一说,Golang 是如何读取YAML,JSON,INI等配置文件的。 一. go读取json配置文件 JSON 应该比较熟悉,它是一种轻量级的数据交换格式。层次结构简洁清晰 ,易于阅读和编写࿰…...

一、安装GoLang环境和开发工具
一、安装GoLang环境 GoLang中国镜像站 下载后对应的环境包以后,一路下一步就好了,安装路径的话,尽量就安装到默认的文件目录下。 二、配置Go的环境变量 右击此电脑–>属性–>高级系统设置–>环境变量,打开环境变量设置…...

条款40:对并发使用std::atomic,对特种内存使用valatile
可怜的volatile。被误解到如此地步。它甚至不应该出现在本章中,因为它与并发程序设计毫无关系。但是在其他程序设计语言中(Java和C#),它还是会对并发程序设计有些用处。甚至在C++中,一些编译器也已经把volatile投入到染缸,使得它的语义显得可以用于并发软件中(但是仅可用…...

Navicat使用HTTP通道服务器进行连接mysql数据库(超简单三分钟完成),centos安装nginx和php,docker安装nginx+php合并版
序言 因为数据库服务器在外网是不能直接连接访问的,但是可以访问网站,网站后台就能访问数据库,所以在此之前,访问数据库的数据是一件非常麻烦的事情,在平时和运维的交流中发现,他们会使用ssh通道进行连接访…...

图:有向无环图(DAG)
1.有向无环图的定义 有向无环图:若一个有向图中不存在环,则称为有向无环图。 简称DAG图(Directed Acyclic Graph) 顶点中不可能出现重复的操作数。 2.有向无环图的应用 1.描述算数表达式 用有向无环图描述算术表达式。 解题步骤: 把各个操作数不重…...

Python入门教程 - 基本语法 (一)
目录 一、注释 二、Python的六种数据类型 三、字符串、数字 控制台输出练习 四、变量及基本运算 五、type()语句查看数据的类型 六、字符串的3种不同定义方式 七、数据类型之间的转换 八、标识符命名规则规范 九、算数运算符 十、赋值运算符 十一、字符串扩展 11.1…...

使用PAM保障开发运营安全
硬编码凭据和 DevOps 系统中缺乏凭据安全性是组织的巨大漏洞。以明文形式访问凭据的恶意内部人员可以在 IT 中建立和扩展其立足点 基础设施,构成巨大的数据被盗风险。 什么是PAM 特权访问管理 (PAM) 是指一组 IT 安全管理原则,可…...

《Go 语言第一课》课程学习笔记(十二)
函数 Go 函数与函数声明 在 Go 语言中,函数是唯一一种基于特定输入,实现特定任务并可返回任务执行结果的代码块(Go 语言中的方法本质上也是函数)。在 Go 中,我们定义一个函数的最常用方式就是使用函数声明。 第一部…...

【深入浅出C#】章节10: 最佳实践和性能优化:编码规范和代码风格
编码规范和代码风格之所以重要,是因为它们直接影响到软件开发的质量、可维护性、可读性和协作效率。编码规范和代码风格是编程中的关键要素,它们有助于编写高质量、可维护和易读的代码,提高团队协作效率,减少错误,降低…...

LNMP架构:搭建Discuz论坛
文章目录 1. 编译安装Nginx1.1 前置准备1.2 编译安装1.3 添加nginx系统服务 2.编译安装MySql2.1 前置准备2.2 编译安装2.3 修改mysql 配置文件2.4 设置路径环境变量2.5 初始化数据库2.6 添加musql系统服务2.7 修改MySql登录密码 3. 编译安装PHP3.1 前置准备3.2 编译安装3.3 复制…...

详解Numpy(基于jupyter notebook)
详解Numpy(基于jupyter notebook) 1.创建数组2.数据类型3.数组切片和索引4.Numpy的广播与数组操作5.数组合并与通用函数6.其他通用函数 1.创建数组 #引入numpy包,以后np就代表numpy import numpy as npanp.arange(10,30,2)#10为起点…...

nvm集合node版本,解决新版本jeecgboot3.5.3前端启动失败问题
jeecgboot前端3.5.3页面如下 使用之前的pnpm启动会报错,pnpm是node进行安装的,查询后发现,vue3版本的页面至少需要node16版本,我之前的版本只有15.5,适用于vue2 那么我将先前的node15.5版本删除,然后安装…...

Windows命令行初步:更改配色、提示符以及编码方式
文章目录 启动和退出窗口标题和提示符命令行颜色更改编码 启动和退出 按下winR,调出运行窗口,输入cmd就可以进入命令行了。在Win10以前的系统种,如果在命令行中再输入一个cmd,就会再打开一个命令行。但最近的Win11版本中…...

uniapp onLoad生命周期 uni.$on接受参数无法改变data数据解决办法
问题阐述: a: uni.$emit(name,data)uni.navigateTo({url:b})b:onload(){ uni.$on(name,(res)>{ this.nameres console.log(this.name) })}用以上写法来跨页面传参会发现在b页面,虽然能够接受到参数但是赋值到data时候没生效,虽然控制台能…...

Android Camera开发入门(4):USB/UVC Camera的使用
Android Camera开发入门(4):USB/UVC Camera的使用 本文基于开源项目https://github.com/saki4510t/UVCCamera之上进行二次封装和使用 在前几篇文章中,我们介绍了Camera到CameraX的基础功能应用,同时附上了相关代码,需要的源码的大佬们可以滑到最底部获取。 本篇我们一起…...

Java网络爬虫——jsoup快速上手,爬取京东数据。同时解决‘京东安全’防爬问题
文章目录 介绍jsoup使用1.解析url,获取前端代码2.解决京东安全界面跳转3.获取每一组的数据4.获取商品数据的具体信息4.最终代码 介绍 网络爬虫,就是在浏览器上,代替人类爬取数据,Java网络爬虫就是通过Java编写爬虫代码࿰…...

外观模式:简化复杂子系统的访问与使用
文章目录 1. 简介2. 外观模式的基本结构3. 外观模式的实现步骤4. 外观模式的应用与实例4.1 图形界面库的外观模式应用4.2 文件压缩与解压缩的外观模式应用4.3 订单处理系统的外观模式应用 5. 外观模式的优缺点5.1 优点5.2 缺点 6. 总结 1. 简介 外观模式是一种结构型设计模式&…...