nnUNet v2数据准备及格式转换 (二)
如果你曾经使用过nnUNet V1,那你一定明白数据集的命名是有严格要求的,必须按照特定的格式来进行命名才能正常使用。
这一节的学习需要有数据,如果你有自己的数据,可以拿自己的数据来实验,如果没有,可以用十项全能数据集,在之前分享过
nnUNet实战一使用预训练nnUNet模型进行推理,这篇文章里有数据集的下载地址和方法。如果网络问题下载不下来,可以微我。
nnUNet v2 支持的数据格式
在V2版本中支持的数据格式类型更多,默认情况下,支持以下文件格式:
- NaturalImage2DIO:.png、.bmp、.tif
- NibabelIO:.nii.gz、.nrrd、.mha
- NibabelIOWithReorient:.nii.gz、.nrrd、.mha。该阅读器会将图像重新定向为 RAS!
- SimpleITKIO:.nii.gz、.nrrd、.mha
- Tiff3DIO:.tif、.tiff。3D tif 图像!由于 TIF 没有存储间距信息的标准化方法,因此 nnU-Net 期望每个 TIF 文件都附带一个同名的 .json 文件,其中包含三个数字(没有单位,没有逗号。只是用空格分隔),每个数字一个方面。
nnU-Net V2 的一大变化是支持多种输入文件类型。将所有内容转换为 .nii.gz 的日子已经一去不复返了!nnU-Net 附带了广泛的读取器+写入器集合,您甚至可以添加自己的读取器+写入器来支持您的数据格式!请参阅此处。
数据集文件夹结构
数据集必须位于该nnUNet_raw文件夹中,
nnUNet_raw/
├── Dataset001_BrainTumour
├── Dataset002_Heart
├── Dataset003_Liver
├── Dataset004_Hippocampus
├── Dataset005_Prostate
├── ...
在每个数据集文件夹中,具有以下结构:
Dataset001_BrainTumour/
├── dataset.json
├── imagesTr
├── imagesTs # optional
└── labelsTr
nnUNet_raw/Dataset001_BrainTumour/
├── dataset.json
├── imagesTr
│ ├── BRATS_001_0000.nii.gz
│ ├── BRATS_001_0001.nii.gz
│ ├── BRATS_001_0002.nii.gz
│ ├── BRATS_001_0003.nii.gz
│ ├── BRATS_002_0000.nii.gz
│ ├── BRATS_002_0001.nii.gz
│ ├── BRATS_002_0002.nii.gz
│ ├── BRATS_002_0003.nii.gz
│ ├── ...
├── imagesTs
│ ├── BRATS_485_0000.nii.gz
│ ├── BRATS_485_0001.nii.gz
│ ├── BRATS_485_0002.nii.gz
│ ├── BRATS_485_0003.nii.gz
│ ├── BRATS_486_0000.nii.gz
│ ├── BRATS_486_0001.nii.gz
│ ├── BRATS_486_0002.nii.gz
│ ├── BRATS_486_0003.nii.gz
│ ├── ...
└── labelsTr├── BRATS_001.nii.gz├── BRATS_002.nii.gz├── ...
需要注意的是,与第一版本中的文件夹及数据集命名有些许差别

比如,第一版数据集用 TaskXXXX, V2版本用 DatasetXXX
dataset.json 文件构建
第二版本的 dataset.json 文件也发生了变化
dataset.json 包含 nnU-Net 训练所需的元数据。自版本 1 以来,我们大大减少了必填字段的数量! (第一版见 nnUNet实战一使用预训练nnUNet模型进行推理)
以下是 MSD 的 Dataset005_Prostate 示例中的 dataset.json 的样子:
{ "channel_names": { # formerly modalities"0": "T2", "1": "ADC"}, "labels": { # THIS IS DIFFERENT NOW!"background": 0,"PZ": 1,"TZ": 2}, "numTraining": 32, "file_ending": ".nii.gz""overwrite_image_reader_writer": "SimpleITKIO" # optional! If not provided nnU-Net will automatically determine the ReaderWriter}
Channel_names 确定 nnU-Net 使用的归一化。如果通道被标记为“CT”,则将使用基于前景像素强度的全局归一化。如果是其他情况,将使用 per-channel z-scoring
相对于 nnU-Net v1 的重要变化:

modality现在称为channel_names,以消除对医学图像的强烈偏见- Lable 的结构不同(name -> int 而不是 int -> name)。这样做的好处有助于层次标签的使用,具体见 【nnUNet v2版本与V1版有什么不同?】 这一部分
- 添加
file_ending字段:以支持不同的输入文件类型 overwrite_image_reader_writer可选!可用于指定ReaderWriter 类。如果不提供,nnU-Net会自动判断ReaderWriterregions_class_order仅用于基于regions的训练,具体见 region based trianing
由于V2版中,不需要指定训练和测试集的图像名字,减少了很多字段,构建起来就很简单了。可以把上述 dataset.json 复制下来,按照自己的数据集手动修改一下。
nnUNet v1 的数据格式如何转换为 V2 的格式
假设有一个数据集已经在 V1 上跑过了,如果您要从 v1 上迁移过来,请使用nnUNetv2_convert_old_nnUNet_dataset转换现有数据集。
迁移 nnU-Net v1 任务的示例:
nnUNetv2_convert_old_nnUNet_dataset INPUT_FOLDER OUTPUT_FOLDER
eg: nnUNetv2_convert_old_nnUNet_dataset /nnUNet_raw_data_base/nnUNet_raw_data/Task131_WORD/ Dataset131_WORD
- input_folder:指的是 V1 版本里要转换的数据(需要给出具体地址)
- output_folder: 只需要给出名字,不需要具体地址
此处迁移,主要是自动帮你修改 dataset.json.并帮你把数据放入 V2 的 nnUNet_raw 文件夹里面去
文章持续更新,可以关注微信公众号【医学图像人工智能实战营】获取最新动态,一个关注于医学图像处理领域前沿科技的公众号。坚持已实践为主,手把手带你做项目,打比赛,写论文。凡原创文章皆提供理论讲解,实验代码,实验数据。只有实践才能成长的更快,关注我们,一起学习进步~
我是Tina, 我们下篇博客见~
白天工作晚上写文,呕心沥血
觉得写的不错的话最后,求点赞,评论,收藏。或者一键三连

相关文章:
nnUNet v2数据准备及格式转换 (二)
如果你曾经使用过nnUNet V1,那你一定明白数据集的命名是有严格要求的,必须按照特定的格式来进行命名才能正常使用。 这一节的学习需要有数据,如果你有自己的数据,可以拿自己的数据来实验,如果没有,可以用十…...
ant-vue1.78版监听a-modal遮罩层的滚动事件
监听a-modal遮罩层的滚动事件 我们开发过程中经常有遇到监听页面滚动的事件需求,去做一些下拉加载或者是下拉分页的需求,我们直接在vue的生命周期中去绑定事件监听非常的方便,但如果是弹框的遮罩层的滚动监听呢?页面的监听完全是…...
MATLAB中residue函数用法
目录 语法 说明 示例 求解具有实根的部分分式展开式 展开具有复数根和同次分子及分母的分式 展开分子次数高于分母次数的分式 residue函数的功能是部分分式展开(部分分式分解)。 语法 [r,p,k] residue(b,a) [b,a] residue(r,p,k) 说明 [r,p…...
攻防世界-Caesar
原题 解题思路 没出现什么特殊字符,可能是个移位密码。凯撒密码加密解密。偏移12位就行。...
嵌入式开发-lin总线介绍 一.概述
1.1lin总线定义和历史 LIN总线(Local Interconnect Network)是一种基于UART/SCI(Universal Asynchronous Receiver-Transmitter/Serial Communication Interface)的低成本串行通信协议。它主要用于汽车、家电、办公设备等多种领域…...
羊城杯-2023-Crypto
文章目录 Danger_RSA题目描述:题目分析: Easy_3L题目描述:题目分析: XOR贯穿始终题目描述:题目分析: MCeorpkpleer题目描述:题目分析: SigninCrypto题目描述:题目分析&am…...
RabbitMQ快速上手及讲解
前言:在介绍RabbitMQ之前,我们先来看下面一个场景: 1.1.1.1 异步处理 场景说明: 用户注册后,需要发注册邮件和注册短信,传统的做法有两种 1.串行的方式 (1)串行方式:将注册信息写入数据库后&a…...
使用多线程std::thread发挥多核计算优势(解答)
使用多线程std::thread发挥多核计算优势(题目) 单核无能为力 如果我们的电脑只有一个核,那么我们没有什么更好的办法可以让我们的程序更快。 因为这个作业限制了你修改算法函数。你唯一能做的就是利用你电脑的多核。 使用多线程 由于我们…...
MySQL分页查询详解:优化大数据集的LIMIT和OFFSET
最近在工作中,我们遇到了一个需求,甲方要求直接从数据库导出一个业务模块中所有使用中的工单信息。为了实现这一目标,我编写了一条SQL查询语句,并请求DBA协助导出数据。尽管工单数量并不多,只有3000多条,但…...
解构赋值、函数默认值
暂时性死区,TDZ(Temporal Dead Zone) var x 1 {let x x//此处声明了x,但是没有对x赋值,相当于在赋值之前引用x,所以会造成报错console.log(x)//报错x is not defined,暂时性死区,…...
【已解决】Mybatis 实现 Group By 动态分组查询
🎉工作中遇到这样一个需求场景:实现一个统计查询,要求可以根据用户在前端界面筛选的字段进行动态地分组统计。也就是说,后端在实现分组查询的时候,Group By 的字段是不确定的,可能是一个字段、多个字段或者…...
Android修改默认gradle路径
Android Studio每次新建项目,都会默认在C盘生成并下载gradle相关文件,由于C盘空间有限,没多久C盘就飘红了,于是就需要把gradle相关文件转移到其他盘 1、到C盘找到gradle文件 具体路径一般是:C:\Users\用户\ .gradle …...
原生JS+canvas实现炫酷背景
原生JScanvas实现炫酷背景 可以在需要的背景页使用 <!doctype html> <html> <head> <meta charset"utf-8"> <title>HTML5 Canvas矩阵粒子波浪背景动画特效</title> <style> html,body { height:100%; } body { …...
Linux学习之NAS服务器搭建
NAS是Network Attached Storage的缩写,也就是网络附属存储。可以使用自己已经不怎么使用的笔记本搭建一台NAS服务器。 fdisk -l可以看一下各个磁盘的状态。 可以看到有sda、sdb、sdc和sdd等四块硬盘。 lvs、vgs和pvs结合起来看,sdb和sdc没有被使用。 …...
分享码云上8个宝藏又有价值的开源图片编辑器
如果你需要高效地处理图片,那么这8款实用工具是可以尝试的! 它们能够进行一键抠图、放大、拼接、转矢量图、图标自动生成以及等操作,让你的工作效率飞升! 在Gitee这个最有价值的开源项目计划是Gitee综合评定出的优秀开源项目的展示…...
TCP Header都有啥?
分析&回答 源端口号(Source Port) :16位,标识主机上发起传送的应用程序; 目的端口(Destonation Port) :16位,标识主机上传送要到达的应用程序。 源端,目…...
无涯教程-Android - AutoCompleteTextView函数
AutoCompleteTextView是一个类似于EditText的视图,只是它在用户键入时自动显示补充数据。 AutoCompleteTextView - 属性 以下是与AutoCompleteTextView控件相关的重要属性。您可以查看Android官方文档以获取属性的完整列表以及可以在运行时更改这些属性的相关方法。…...
【Docker】 07-安装ElasticSearch、Kibana
安装ElasticSearch 1、拉取镜像 docker pull elasticsearch:6.4.2 2、运行 docker run -p 9200:9200 -p 9300:9300 --name es -d elasticsearch:6.4.2 启动会报错,按照下面流程修改 3、在宿主机中,修改配置sysctl.conf vim /etc/sysctl.conf 加入如下配…...
【数据结构篇】线性表1 --- 顺序表、链表 (万字详解!!)
前言:这篇博客我们重点讲 线性表中的顺序表、链表 线性表(linear list)是n个具有相同特性的数据元素的有限序列。 线性表是一种在实际中广泛使用的数据结构,常见的线性表:顺序表、链表、栈、队列... 线性表在逻辑上是…...
C语言每日一练--Day(17)
本专栏为c语言练习专栏,适合刚刚学完c语言的初学者。本专栏每天会不定时更新,通过每天练习,进一步对c语言的重难点知识进行更深入的学习。 今日练习题关键字:数对 截取字符串 💓博主csdn个人主页:小小unico…...
大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...
微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...
从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
PL0语法,分析器实现!
简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...
让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...
华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建
华为云FlexusDeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色,华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型,能助力我们轻松驾驭 DeepSeek-V3/R1,本文中将分享如何…...
【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...
