【C++模拟实现】vector的模拟实现
【C++模拟实现】vector的模拟实现
目录
- 【C++模拟实现】vector的模拟实现
- vector模拟实现的标准代码
- vector模拟实现中的要点
- insert和erase会涉及到迭代器失效的问题
- vector深度剖析
- 关于模版template< class InputIterator >
- 使用memcpy拷贝问题
作者:爱写代码的刚子
时间:2023.9.1
前言:模拟实现系列好久没更了,前来补更。
vector模拟实现的标准代码
namespace test
{template<class T>class vector{public:typedef T* iterator;typedef const T* const_iterator;iterator begin(){return _start;}iterator end(){return _finish;}const_iterator cbegin(){return _start;}const_iterator cend() const{return _finish;}vector():_start(nullptr),_finish(nullptr),_endOfStorage(nullptr){}vector(int n, const T& value = T()){resize(n,value);}template<class InputIterator>vector(InputIterator first, InputIterator last):_start(nullptr),_finish(nullptr),_endOfStorage(nullptr){//存疑,是否要reservewhile(first!=last){push_back(*first);++first;}}vector(const vector<T>& v)//这里是引用:_start(nullptr),_finish(nullptr),_endOfStorage(nullptr){reserve(v.capacity());for(auto e:v){push_back(e);}}vector<T>& operator= (vector<T> v){swap(v);return *this;}~vector(){delete[] _start;_start = nullptr;_finish = nullptr;_endOfStorage = nullptr;}size_t size() const{return _finish - _start;}size_t capacity() const{return _endOfStorage - _start;}void reserve(size_t n){if(n>capacity()) {iterator tmp = new T[n];//拷贝数据(手动)int sz = size();if(_start) {for (int i = 0; i < sz; i++) {tmp[i] = _start[i];}delete[] _start;//一定要记得}_start = tmp;_finish = _start + sz;_endOfStorage = _start + n;}}void resize(size_t n, const T& value = T()){if(n<capacity()){_finish=_start + n;}else{reserve(n);while(_finish!=_start+n){*_finish=value;++_finish;}}}T& operator[](size_t pos){assert(pos<size());return _start[pos];}const T& operator[](size_t pos)const{assert(pos<size());return _start[pos];}void push_back(const T& x){insert(end(),x);}void pop_back(){erase(--end());//注意是--end(),end()指向的是数据的下一个位置}void swap(vector<T>& v){std::swap(v._start,_start);std::swap(v._finish,_finish);std::swap(v._endOfStorage,_endOfStorage);}iterator insert(iterator pos, const T& x){assert(pos>=_start&&pos<=_finish);if(_finish==_endOfStorage){size_t len = pos - _start;size_t newcapacity = capacity()==0?4:capacity()*2;reserve(newcapacity);pos = _start + len;}iterator end = _finish - 1;while(end>=pos){*(end+1) = *end;--end;//--end不是++end()}*pos = x;++_finish;return pos;}iterator erase(iterator pos){assert(pos>=_start&&pos<=_finish);iterator it=pos+1;while(it!=_finish){*(it-1)=*it;++it;}--_finish;return pos;}private:iterator _start; // 指向数据块的开始iterator _finish; // 指向有效数据的尾iterator _endOfStorage; // 指向存储容量的尾};
}
vector模拟实现中的要点
insert和erase会涉及到迭代器失效的问题
迭代器的主要作用就是让算法能够不用关心底层数据结构,其底层实际就是一个指针,或者是对指针进行了 封装,比如:vector的迭代器就是原生态指针T*。因此迭代器失效,实际就是迭代器底层对应指针所指向的 空间被销毁了,而使用一块已经被释放的空间,造成的后果是程序崩溃(即如果继续使用已经失效的迭代器,程序可能会崩溃)。
有关迭代器失效的几种做法
-
对于vector可能会导致其迭代器失效的操作有:
-
会引起其底层空间改变的操作,都有可能是迭代器失效,比如:resize、reserve、insert、assign、 push_back等。
出错原因:以上操作,都有可能会导致vector扩容,也就是说vector底层原理旧空间被释放掉, 而在打印时,it还使用的是释放之间的旧空间,在对it迭代器操作时,实际操作的是一块已经被释放的空间,而引起代码运行时崩溃。
解决方式:在以上操作完成之后,如果想要继续通过迭代器操作vector中的元素,只需给it重新赋值即可。
-
指定位置元素的删除操作–erase
erase删除pos位置元素后,pos位置之后的元素会往前搬移,没有导致底层空间的改变,理论上讲迭代器不应该会失效,但是:如果pos刚好是最后一个元素,删完之后pos刚好是end的位置,而end位置是没有元素的,那么pos就失效了。因此删除vector中任意位置上元素时,vs就认为该位置迭代器失效了。(但Linux下g++可能不一样,因为迭代器使用了原生指针,没有像vs一样进行封装)
-
**迭代器失效解决办法:在使用前,对迭代器重新赋值即可。 **
涉及到底层空间改变时,需要考虑重置迭代器
vector深度剖析
关于模版template< class InputIterator >
为什么不使用自己之前定义的iterator?
- 若使用iterator做迭代器,会导致初始化的迭代器区间[first,last)只能是vector的迭代器
- 重新声明迭代器,迭代器区间[first,last)可以是任意容器的迭代器
使用memcpy拷贝问题
为什么在reserve接口中不能直接使用memcpy进行拷贝?
- memcpy是内存的二进制格式拷贝,将一段内存空间中内容原封不动的拷贝到另外一段内存空间中
- 如果拷贝的是自定义类型的元素,memcpy即高效又不会出错,但如果拷贝的是自定义类型元素,并且自定义类型元素中涉及到资源管理时,就会出错,memcpy的拷贝实际是浅拷贝。
所以在模版模拟实现中慎用memcpy!!!
结论:如果对象中涉及到资源管理时,千万不能使用memcpy进行对象之间的拷贝,因为memcpy是浅拷贝,否则可能会引起内存泄漏甚至程序崩溃。
【附】:范围for是C++11的
相关文章:

【C++模拟实现】vector的模拟实现
【C模拟实现】vector的模拟实现 目录 【C模拟实现】vector的模拟实现vector模拟实现的标准代码vector模拟实现中的要点insert和erase会涉及到迭代器失效的问题vector深度剖析关于模版template< class InputIterator >使用memcpy拷贝问题 作者:爱写代码的刚子 …...

go学习part21(3)redis连接池
连接池 1.介绍 每次使用数据就就建立链接再关闭可以,但是如果有大量客户端频繁请求连接,大量创建连接和关闭会非常耗费资源。 所以就建立一个连接池,里面存放几个不关闭的连接,谁要用就分配给谁。 说明:通过Golang 对 Redis操…...

乐理-笔记
乐理笔记整理 1、前言2、认识钢琴键盘及音名3、升降号、还原号4、如何区分同一音名的不同键?5、各类音符时值的关系6、歌曲拍号7、拍号的强弱规律8、歌曲速度(BPM)9、附点音符10、三连音12、唱名与简谱数字13、自然大调(白键&…...

java八股文面试[数据库]——B树和B+树的区别
B树是一种树状数据结构,它能够存储数据、对其进行排序并允许以O(logn)的时间复杂度进行查找、顺序读取、插入和删除等操作。 1、B树的特性 B树中允许一个结点中包含多个key,可以是3个、4个、5个甚至更多,并不确定,需要看具体的实…...

2、Nginx 安装
文章目录 2、Nginx 安装2.1 官网下载2.2 安装 nginx2.2.1 第一步2.2.2 第二步2.2.3 第三步,安装 nginx2.2.4 第四步,修改防火漆规则 【尚硅谷】尚硅谷Nginx教程由浅入深 志不强者智不达;言不信者行不果。 2、Nginx 安装 2.1 官网下载 nginx…...

最适合 AI 的 Python Web 框架
迷途小书童的 Note 读完需要 4分钟 速读仅需 2 分钟 1 简介 本文将介绍 Gradio 库,它是 Python 的一个 web 框架,可以帮助我们快速构建交互式 AI 应用。我们将了解 Gradio 的应用场景、基本原理、功能介绍,并通过一个代码示例来演示如何使用 …...
算法通关村第十八关——回溯
回溯很大感觉就是多重递归,在递归的题目中,例如斐波那契数列,只需要考虑当前情况以及他的子情况。而在回溯中,要进行很多次递归,并且要对条件进行处理。 LeetCode257:给你一个二叉树的根节点root,按任意顺序ÿ…...

使用kafka还在依赖Zookeeper,kraft模式了解下
Kafka的Kraft模式 概述 Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者在网站中的所有动作流数据。其核心组件包含Producer、Broker、Consumer,以及依赖的Zookeeper集群。其中Zookeeper集群是Kafka用来负责集群元数据的管理、控制器…...

【100天精通Python】Day52:Python 数据分析_Numpy入门基础与数组操作
目录 1 NumPy 基础概述 1.1 NumPy的主要特点和功能 1.2 NumPy 安装和导入 2 Numpy 数组 2.1 创建NumPy数组 2.2 数组的形状和维度 2.3 数组的数据类型 2.4 访问和修改数组元素 3 数组操作 3.1 数组运算 3.2 数学函数 3.3 统计函数 4 数组形状操作 4.1 重塑数组形…...
Day01-Java基础语法
目录 1. 人机交互 1.1 什么是cmd? 1.2 如何打开CMD窗口? 1.3 常用CMD命令 1.4 CMD练习 1.5 环境变量 2. Java概述 1.1 Java是什么? 1.2下载和安装 1.2.1 下载 1.2.2 安装 1.2.3 JDK的安装目录介绍 1.3 HelloWorld小案例 2.3.1 …...
代码随想录二刷day06
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、力扣242. 有效的字母异位词二、力扣349. 两个数组的交集三、力扣202. 快乐数四、力扣1两数之和 前言 一、力扣242. 有效的字母异位词 class Solution {pub…...

可扩展的Blender插件开发汇总
成熟的 Blender 3D 插件是令人惊奇的事情。作为 Python 和 Blender 的新手,我经常发现自己被社区中的人们创造的强大的东西弄得目瞪口呆。坦率地说,其中一些包看起来有点神奇,当自我怀疑或冒名顶替综合症的唠叨声音被打破时,很容易想到“如果有人能做出可以做xxx的东西就好…...

2023_Spark_实验二:IDEA安装及配置
一、下载安装包 链接:百度网盘 请输入提取码 所在文件夹:大数据必备工具--》开发工具(前端后端)--》后端 下载文件名称:ideaIU-2019.2.3.exe (喜欢新版本也可安装新版本,新旧版本会存在部分差异) IDEA …...

小赢科技,寻找金融科技核心价
如果说金融是经济的晴雨表,是通过改善供给质量以提高经济质量的切入口,那么金融科技公司,就是这一切行动的推手。上半年,社会经济活跃程度提高背后,金融科技公司既是奉献者,也是受益者。 8月29日࿰…...

NAT与代理服务器
1.DNS Domain Name System 是一整套从域名映射到IP的系统(把域名转化为IP地址) 2.域名简介 3.周鸿祎 傅盛 4.ICMP协议 用来网络故障排查原因 草图理解“位置” ping ICMP 是绕过TCP UDP传输协议的,没有端口号 traceroute 5.NAT技术 N…...

24.排序,插入排序,交换排序
目录 一. 插入排序 (1)直接插入排序 (2)折半插入排序 (3)希尔排序 二. 交换排序 (1)冒泡排序 (2)快速排序 排序:将一组杂乱无章的数据按一…...

Navicat16安装教程
注:因版权原因,本文已去除破解相关的文件和内容 1、在本站下载解压后即可获得Navicat16安装包和破解补丁,如图所示 2、双击“navicat160_premium_cs_x64.exe”程序,即可进入安装界面, 3、点击下一步 4、如图所示勾选“…...

【看表情包学Linux】初识文件描述符 | 虚拟文件系统 (VFS) 初探 | 系统传递标记位 | O_TRUNC | O_APPEND
爆笑教程《看表情包学Linux》👈 猛戳订阅! 💭 写在前面:通过上一章节的讲解,想必大家已对文件系统基本的接口有一个简单的了解,本章我们将继续深入讲解,继续学习系统传递标志位&…...

ssm+vue“魅力”繁峙宣传网站源码和论文
ssmvue“魅力”繁峙宣传网站源码和论文102 开发工具:idea 数据库mysql5.7 数据库链接工具:navcat,小海豚等 技术:ssm 摘 要 随着科学技术的飞速发展,各行各业都在努力与现代先进技术接轨,通过科技手段提高自身…...

Linux系统编程5(线程概念详解)
线程同进程一样都是OS中非常重要的部分,线程的应用场景非常的广泛,试想我们使用的视频软件,在网络不是很好的情况下,通常会采取下载的方式,现在你很想立即观看,又想下载,于是你点击了下载并且在…...

地震勘探——干扰波识别、井中地震时距曲线特点
目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...
LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》
这段 Python 代码是一个完整的 知识库数据库操作模块,用于对本地知识库系统中的知识库进行增删改查(CRUD)操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 📘 一、整体功能概述 该模块…...

Golang——9、反射和文件操作
反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一:使用Read()读取文件2.3、方式二:bufio读取文件2.4、方式三:os.ReadFile读取2.5、写…...
flow_controllers
关键点: 流控制器类型: 同步(Sync):发布操作会阻塞,直到数据被确认发送。异步(Async):发布操作非阻塞,数据发送由后台线程处理。纯同步(PureSync…...