当前位置: 首页 > news >正文

onnx 模型切割掉conv后面的节点,设置输出层名称和最后节点名称一致,设置输出层shape和输出节点一致.

某些模型最后卷积层之后的算子不适合在推理引擎里面跑,切割掉conv后面的算子,在cpu上实现有比较好的性能.
包含:
1.获取onnx中间节点的shape的示例
2.增加onnx模型输出,设置名称,type, shape. 示例
3.编辑onnx模型示例切割掉绿色部分示例
import onnx
import sys
import json
from onnx import shape_inference, TensorProtoif len(sys.argv) < 2:print('Usage: ' + sys.argv[0] + '<onnx_filename>')exit(-1)onnx_file = sys.argv[1]# 加载ONNX模型
model = onnx.load(onnx_file)graph = model.graphoutputs = model.graph.output 
if(len(outputs)!=3):print("This isn't ScoreBoxKpt model!")quit()output_list=["output0","output1","output2"]for output in outputs:if output.name in score_box_kpt :print(f"output name: {output.name}")else:print("This isn't a fit model!")quit()def getConvList(endName):stack=[]stack.append(endName)convList=[]while(len(stack)):name=stack.pop()for node in graph.node:if name in node.output :if node.op_type=="Conv":if node.name not in convList :convList.append(node.name)else: for input in node.input:if input not in stack:stack.insert(0, input)return convListConv0=getConvList(output_list[0])
Conv1=getConvList(output_list[1])
Conv2=getConvList(output_list[2])def save2json(save_dict, name):if len(save_dict) == 0:print("this is nothing to save json")return Nonewith open(name, 'w') as fp:#{'a': 'Runoob', 'b': 7}json.dump(save_dict, fp, sort_keys=False, indent=4, separators=(',', ': ')) #default=strsave_dict = {output_list[0]:scoreConv,output_list[1]:boxConv,output_list[2]:kptConv}conv_list=Conv0+Conv1+Conv2#获取onnx中间节点的shape.
output_dim_dic={}
inferred_onnx_model = shape_inference.infer_shapes(model)
inferred_graph = inferred_onnx_model.graph
inferred_value_info = inferred_graph.value_info
for node in graph.node:if node.name in conv_list:for value_info in inferred_value_info:if value_info.name==node.output[0]:output_dim_dic[node.name]=value_info.type.tensor_type;#删除conv 后面的onnx节点
# Find target node index
for name in conv_list:target_node = Nonefor node in graph.node:if node.name == name:target_node=nodebreakoutput_names = []for output in target_node.output:output_names.append(output)set1=set(output_names)del_node = []have_new_del_node = Falsewhile True:have_new_del_node = Falsefor node in graph.node:if node.name in del_node:continueset2=set(node.input)if set1.intersection(set2): output_names+=node.output         set1=set(output_names)del_node.append(node.name)have_new_del_node = Trueif have_new_del_node == False:breakfor node in graph.node:if node.name in del_node:print(f"1remove node {node.name}")model.graph.node.remove(node)have_new_del_node = False
while True:have_new_del_node = Falsefor node1 in graph.node:if node1.name in conv_list :continueset1=set(node1.output)to_delete =Truefor node2 in graph.node:set2=set(node2.input)if set1.intersection(set2): to_delete = Falsebreakif to_delete == True:print(f"2remove node {node1.name}")model.graph.node.remove(node1)have_new_del_node=Trueif have_new_del_node == False :breaksave_output_name=[]
for node in graph.node:if node.name in conv_list:#增加输出层output_info = onnx.helper.ValueInfoProto()node.output[0]=node.nameoutput_info.name = node.output[0]for dim_value in output_dim_dic[node.name].shape.dim:output_info.type.tensor_type.shape.dim.extend([dim_value])output_info.type.tensor_type.elem_type = TensorProto.FLOATprint(output_info)graph.output.extend([output_info])save_output_name.append(node.output[0])outputs = model.graph.output 
# 打印输出节点名称
for output in outputs:if output.name  in save_output_name :continuemodel.graph.output.remove(output)
outputs = model.graph.output 
# 打印输出节点名称
for output in outputs:if output.name  in save_output_name :continuemodel.graph.output.remove(output)
# Save modified ONNX model
onnx.checker.check_model(model)
onnx.save(model, "backbone.onnx")
save2json(save_dict, 'conv_param.json'

相关文章:

onnx 模型切割掉conv后面的节点,设置输出层名称和最后节点名称一致,设置输出层shape和输出节点一致.

某些模型最后卷积层之后的算子不适合在推理引擎里面跑&#xff0c;切割掉conv后面的算子&#xff0c;在cpu上实现有比较好的性能&#xff0e; 包含&#xff1a; &#xff11;&#xff0e;获取onnx中间节点的shape的示例 &#xff12;&#xff0e;增加onnx模型输出&#xff0c;设…...

泛型的学习

泛型深入 泛型&#xff1a;可以在编译阶段约束操作的数据类型&#xff0c;并进行检查 泛型的格式&#xff1a;<数据类型> 注意&#xff1a;泛型只能支持引用数据类型 //没有泛型的时候&#xff0c;集合如何存储数据//如果我们没有给集合指定类型&#xff0c;默认认为…...

L1-061 新胖子公式(Python实现) 测试点全过

前言&#xff1a; {\color{Blue}前言&#xff1a;} 前言&#xff1a; 本系列题使用的是&#xff0c;“PTA中的团体程序设计天梯赛——练习集”的题库&#xff0c;难度有L1、L2、L3三个等级&#xff0c;分别对应团体程序设计天梯赛的三个难度。更新取决于题目的难度&#xff0c;…...

潜艇来袭(Qt官方案例-2维动画游戏)

一、游戏介绍 1 开始界面 启动程序&#xff0c;进入开始界面。 2 开始新游戏 点击菜单&#xff1a;File》New Game &#xff08;或者CtrlN&#xff09;进入新游戏。 开始新游戏之后&#xff0c;会有一个海底的潜艇&#xff0c;和水面舰艇对战。 计算机&#xff1a;自动控制…...

50ETF期权开户平台(0门槛期权开户指南)

50ETF期权开户平台比较好的有&#xff1a;期权馆&#xff0c;期权科普馆&#xff0c;小熊期权&#xff0c;期权酱&#xff0c;财顺财经&#xff0c;财顺期权等&#xff0c;都是国内前十的期权分仓平台&#xff0c;下文为大家结算50ETF期权开户平台&#xff08;0门槛期权开户指南…...

leaflet · 关于轨迹移动

1.引入 import MovingMarker from "../src/utils/MovingMarker"; 2.MovingMarker.js内容 import L from "leaflet"; import eventBus from ../util/eventBus; L.interpolatePosition function(p1, p2, duration, t) {var k t/duration;k (k > 0) ? …...

学生宿舍水电费自动缴费系统/基于javaweb的水电缴费系统

摘 要 “互联网”的战略实施后&#xff0c;很多行业的信息化水平都有了很大的提升。但是目前很多学校日常工作仍是通过人工管理的方式进行&#xff0c;需要在各个岗位投入大量的人力进行很多重复性工作&#xff0c;这样就浪费了许多的人力物力&#xff0c;工作效率较低&#x…...

机器人中的数值优化(十三)——QP二次规划

本系列文章主要是我在学习《数值优化》过程中的一些笔记和相关思考&#xff0c;主要的学习资料是深蓝学院的课程《机器人中的数值优化》和高立编著的《数值最优化方法》等&#xff0c;本系列文章篇数较多&#xff0c;不定期更新&#xff0c;上半部分介绍无约束优化&#xff0c;…...

语言深入理解指针(非常详细)(三)

目录 数组名的理解使用指针访问数组 一维数组传参的本质二级指针指针数组指针数组模拟二维数组 数组名的理解 在上⼀个章节我们在使用指针访问数组的内容时&#xff0c;有这样的代码&#xff1a; int arr[10] {1,2,3,4,5,6,7,8,9,10}; int *p &arr[0];这里我们使用 &am…...

实训笔记8.31

实训笔记8.31 8.31笔记一、项目开发流程一共分为七个阶段1.1 数据产生阶段1.2 数据采集存储阶段1.3 数据清洗预处理阶段1.4 数据统计分析阶段1.5 数据迁移导出阶段1.6 数据可视化阶段 二、项目数据清洗预处理的实现2.1 清洗预处理规则2.1.1 数据清洗规则2.1.2 数据预处理规则 2…...

el-table 垂直表头

效果如下&#xff1a; 代码如下&#xff1a; <template><div class"vertical_head"><el-table style"width: 100%" :data"getTblData" :show-header"false"><el-table-columnv-for"(item, index) in getHe…...

B081-Lucene+ElasticSearch

目录 认识全文检索概念lucene原理全文检索的特点常见的全文检索方案 Lucene创建索引导包分析图代码 搜索索引分析图代码 ElasticSearch认识ElasticSearchES与Kibana的安装及使用说明ES相关概念理解和简单增删改查ES查询DSL查询DSL过滤 分词器IK分词器安装测试分词器 文档映射(字…...

机器学习:塑造未来的核心力量

着科技的飞速发展&#xff0c;机器学习已经成为我们生活中不可或缺的一部分。无论是搜索引擎、推荐系统&#xff0c;还是自动驾驶汽车和机器人&#xff0c;都依赖于机器学习算法。本文将探讨机器学习的基本概念、应用领域以及未来发展趋势。 一、机器学习的基本概念 机器学习…...

RK3568-i2c-适配8010rtc时钟芯片

硬件连接 从硬件原理图中可以看出&#xff0c;rtc时钟芯片挂载在i2c3总线上&#xff0c;设备地址需要查看芯片数据手册。编写设备树 &i2c3 {status "okay";rx8010: rx801032 {compatible "epson,rx8010";reg <0x32>;}; };使能驱动 /kernel/…...

Spring Security - 基于内存快速demo

基于内存方式 - 只作学习参考1.引入依赖<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-thymeleaf</artifactId></dependency>2.login.html、index.html、fail.htmllogin.html:<form method…...

6 | 从文本文件中读取单词并输出不重复的单词列表

Transformation 操作 Transformation 操作是用于从一个 RDD(Resilient Distributed Dataset)创建一个新的 RDD,通常是通过对原始 RDD 的元素进行映射、筛选、分组等操作来实现的。Transformation 操作不会立即执行,而是惰性计算,只有在 Action 操作触发时才会真正执行。以…...

【微信小程序篇】- 多环境(版本)配置

最近自己在尝试使用AIGC写一个小程序&#xff0c;页面、样式、包括交互函数AIGC都能够帮我完成(不过这里有一点问题AIGC的上下文关联性还是有限制&#xff0c;会经常出现对于需求理解跑偏情况&#xff0c;需要不断的重复强调&#xff0c;并纠正错误&#xff0c;才能得到你想要的…...

ssh配置(一、GitLabGitHub)

一. 为什么配置ssh 使用 ssh 克隆项目&#xff0c;更加安全方便。 git clone 项目时一般使用两种协议 https 和 ssh 。 二. 原理的通俗解释 ssh 解决的问题是登录时的用户身份验证问题&#xff0c;默认使用 RSA&#xff08;也支持其他算法&#xff1a; RSA、DSA、ECDSA、EdD…...

开了抖店后就可以直播带货了吗?想在抖音带货的,建议认真看完!

我是王路飞。 关于抖店和直播带货的关系&#xff0c;其实很多人经常搞不清楚。 不然的话&#xff0c;也不会有这个问题的出现了&#xff1a;开了抖店后就可以直播带货了吗&#xff1f; 在我看来&#xff0c;这个问题很简单&#xff0c;但在不了解抖音电商和直播带货其中门道…...

【深度学习实验】数据可视化

目录 一、实验介绍 二、实验环境 三、实验内容 0. 导入库 1. 归一化处理 归一化 实验内容 2. 绘制归一化数据折线图 报错 解决 3. 计算移动平均值SMA 移动平均值 实验内容 4. 绘制移动平均值折线图 5 .同时绘制两图 6. array转换为tensor张量 7. 打印张量 一、…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

java_网络服务相关_gateway_nacos_feign区别联系

1. spring-cloud-starter-gateway 作用&#xff1a;作为微服务架构的网关&#xff0c;统一入口&#xff0c;处理所有外部请求。 核心能力&#xff1a; 路由转发&#xff08;基于路径、服务名等&#xff09;过滤器&#xff08;鉴权、限流、日志、Header 处理&#xff09;支持负…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)

目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关&#xff0…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

管理学院权限管理系统开发总结

文章目录 &#x1f393; 管理学院权限管理系统开发总结 - 现代化Web应用实践之路&#x1f4dd; 项目概述&#x1f3d7;️ 技术架构设计后端技术栈前端技术栈 &#x1f4a1; 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 &#x1f5c4;️ 数据库设…...

#Uniapp篇:chrome调试unapp适配

chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器&#xff1a;Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...