【目标检测】理论篇(3)YOLOv5实现
Yolov5网络构架实现
import torch
import torch.nn as nnclass SiLU(nn.Module):@staticmethoddef forward(x):return x * torch.sigmoid(x)def autopad(k, p=None):if p is None:p = k // 2 if isinstance(k, int) else [x // 2 for x in k] return pclass Focus(nn.Module):def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groupssuper(Focus, self).__init__()self.conv = Conv(c1 * 4, c2, k, s, p, g, act)def forward(self, x):# 320, 320, 12 => 320, 320, 64return self.conv(# 640, 640, 3 => 320, 320, 12torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))class Conv(nn.Module):def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):super(Conv, self).__init__()self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)self.bn = nn.BatchNorm2d(c2, eps=0.001, momentum=0.03)self.act = SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())def forward(self, x):return self.act(self.bn(self.conv(x)))def fuseforward(self, x):return self.act(self.conv(x))class Bottleneck(nn.Module):# Standard bottleneckdef __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansionsuper(Bottleneck, self).__init__()c_ = int(c2 * e) # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c_, c2, 3, 1, g=g)self.add = shortcut and c1 == c2def forward(self, x):return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))class C3(nn.Module):# CSP Bottleneck with 3 convolutionsdef __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansionsuper(C3, self).__init__()c_ = int(c2 * e) # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c1, c_, 1, 1)self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])# self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])def forward(self, x):return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))class SPP(nn.Module):# Spatial pyramid pooling layer used in YOLOv3-SPPdef __init__(self, c1, c2, k=(5, 9, 13)):super(SPP, self).__init__()c_ = c1 // 2 # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])def forward(self, x):x = self.cv1(x)return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))class CSPDarknet(nn.Module):def __init__(self, base_channels, base_depth, phi, pretrained):super().__init__()#-----------------------------------------------## 输入图片是640, 640, 3# 初始的基本通道base_channels是64#-----------------------------------------------##-----------------------------------------------## 利用focus网络结构进行特征提取# 640, 640, 3 -> 320, 320, 12 -> 320, 320, 64#-----------------------------------------------#self.stem = Focus(3, base_channels, k=3)#-----------------------------------------------## 完成卷积之后,320, 320, 64 -> 160, 160, 128# 完成CSPlayer之后,160, 160, 128 -> 160, 160, 128#-----------------------------------------------#self.dark2 = nn.Sequential(# 320, 320, 64 -> 160, 160, 128Conv(base_channels, base_channels * 2, 3, 2),# 160, 160, 128 -> 160, 160, 128C3(base_channels * 2, base_channels * 2, base_depth),)#-----------------------------------------------## 完成卷积之后,160, 160, 128 -> 80, 80, 256# 完成CSPlayer之后,80, 80, 256 -> 80, 80, 256# 在这里引出有效特征层80, 80, 256# 进行加强特征提取网络FPN的构建#-----------------------------------------------#self.dark3 = nn.Sequential(Conv(base_channels * 2, base_channels * 4, 3, 2),C3(base_channels * 4, base_channels * 4, base_depth * 3),)#-----------------------------------------------## 完成卷积之后,80, 80, 256 -> 40, 40, 512# 完成CSPlayer之后,40, 40, 512 -> 40, 40, 512# 在这里引出有效特征层40, 40, 512# 进行加强特征提取网络FPN的构建#-----------------------------------------------#self.dark4 = nn.Sequential(Conv(base_channels * 4, base_channels * 8, 3, 2),C3(base_channels * 8, base_channels * 8, base_depth * 3),)#-----------------------------------------------## 完成卷积之后,40, 40, 512 -> 20, 20, 1024# 完成SPP之后,20, 20, 1024 -> 20, 20, 1024# 完成CSPlayer之后,20, 20, 1024 -> 20, 20, 1024#-----------------------------------------------#self.dark5 = nn.Sequential(Conv(base_channels * 8, base_channels * 16, 3, 2),SPP(base_channels * 16, base_channels * 16),C3(base_channels * 16, base_channels * 16, base_depth, shortcut=False),)if pretrained:url = {'s' : 'https://github.com/bubbliiiing/yolov5-pytorch/releases/download/v1.0/cspdarknet_s_backbone.pth','m' : 'https://github.com/bubbliiiing/yolov5-pytorch/releases/download/v1.0/cspdarknet_m_backbone.pth','l' : 'https://github.com/bubbliiiing/yolov5-pytorch/releases/download/v1.0/cspdarknet_l_backbone.pth','x' : 'https://github.com/bubbliiiing/yolov5-pytorch/releases/download/v1.0/cspdarknet_x_backbone.pth',}[phi]checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", model_dir="./model_data")self.load_state_dict(checkpoint, strict=False)print("Load weights from ", url.split('/')[-1])def forward(self, x):x = self.stem(x)x = self.dark2(x)#-----------------------------------------------## dark3的输出为80, 80, 256,是一个有效特征层#-----------------------------------------------#x = self.dark3(x)feat1 = x#-----------------------------------------------## dark4的输出为40, 40, 512,是一个有效特征层#-----------------------------------------------#x = self.dark4(x)feat2 = x#-----------------------------------------------## dark5的输出为20, 20, 1024,是一个有效特征层#-----------------------------------------------#x = self.dark5(x)feat3 = xreturn feat1, feat2, feat3
相关文章:

【目标检测】理论篇(3)YOLOv5实现
Yolov5网络构架实现 import torch import torch.nn as nnclass SiLU(nn.Module):staticmethoddef forward(x):return x * torch.sigmoid(x)def autopad(k, pNone):if p is None:p k // 2 if isinstance(k, int) else [x // 2 for x in k] return pclass Focus(nn.Module):def …...

IDEA爪哇操作数据库
少小离家老大回,乡音无改鬓毛衰 ⒈.IDEA2018设置使用主题颜色 IDEA2018主题颜色分为三种:idea原始颜色,高亮色,黑色 设置方法:Settings–Appearance&Behavior–Appearance ⒉.mysql中,没有my.ini,只有…...

一文速学-让神经网络不再神秘,一天速学神经网络基础(七)-基于误差的反向传播
前言 思索了很久到底要不要出深度学习内容,毕竟在数学建模专栏里边的机器学习内容还有一大半算法没有更新,很多坑都没有填满,而且现在深度学习的文章和学习课程都十分的多,我考虑了很久决定还是得出神经网络系列文章,…...
C++ 异常处理——学习记录007
1. 概念 程序中的错误分为编译时错误和运行时错误。编译时出现的错误包括关键字拼写出错、语句分号缺少、括号不匹配等,编译时的错误容易解决。运行时出现的错误包括无法打开文件、数组越界和无法实现指定的操作。运行时出现的错误称为异常,对异常的处理…...
【BIM+GIS】“BIM+”是什么? “BIM+”技术详解
对于我们日常生活影响最大的是信息化和网络化给我们的日常生活带来革命性的变化。“互联网+“在建筑行业里可以称为“BIM+”。“BIM+”"即是通过BIM与各类技术(互联网、大数据等)结合去完成不同的任务。将产品的全生命周期和全制造流程的数字化以及基于信息通信技术的模块…...
Flink算子如何限流
目录 使用方法 调用类图 内部源码 GuavaFlinkConnectorRateLimiter RateLimiter 使用方法 重写AbstractRichFunction中的open()方法,在处理数据前调用limiter.acquire(1); 调用limiter.open(getRuntimeContext())的源码,实际内部是RateLimiter,根据并行度算出subTask…...
垃圾分代收集的过程是怎样的?
垃圾分代收集是Java虚拟机(JVM)中一种常用的垃圾回收策略。该策略将堆内存分为不同的代(Generation),通常分为年轻代(Young Generation)和老年代(Old Generation)。不同代的对象具有不同的生命周期和回收频率。 下面是Java中垃圾分代收集的一般过程: 1…...

NPM 常用命令(四)
目录 1、npm diff 1.1 描述 1.2 过滤文件 1.3 配置 diff diff-name-only diff-unified diff-ignore-all-space diff-no-prefix diff-src-prefix diff-dst-prefix diff-text global tag workspace workspaces include-workspace-root 2、npm dist-tag 2.1 常…...

Anaconda虚拟环境下导入opencv
文章目录 解决方法测试 解决方法 1、根据自己虚拟环境对于的python版本与电脑对应的位长选择具体的版本,例如python3.9选择cp39,64位电脑选择64 下载地址:资源地址 若是不确定自己虚拟环境对应的python版本,可以输入下列命令&…...

Linux设备驱动程序
一、设备驱动程序简介 图1.1 内核功能的划分 可装载模块 Linux有一个很好的特性:内核提供的特性可在运行时进行扩展。这意味着当系统启动 并运行时,我们可以向内核添加功能( 当然也可以移除功能)。 可在运行时添加到内核中的代码被称为“模块”。Linux内核支持好几…...
mybatis <if>标签判断“0“不生效
原if标签写法 <if test"type 0"><!--内部逻辑--> </if> 这种情况不生效,原因是mybatis是用OGNL表达式来解析的,在OGNL的表达式中,0’会被解析成字符(而我传入的type却是string),java是强类型的,cha…...
企业数据的存储形式与方案选择
企业数据的存储形式 DAS(直接附加存储):企业初期银行规模不大,企业的数据存储需求也比较简单,因此对企业数据存储的要求就是安全保存并可以随时调用。而DAS的之间连接可以解决单台服务器的存储空间扩展,高…...

图像处理简介
目录 基本术语 1 .图像(image) 1.1 像素(Pixel) 1.2 颜色深度(Color Depth) 1.3 分辨率(Resolution) 1.4 像素宽高比(Pixel Aspect Ratio) 1.5 帧率(FPS) 1.6 码率(BR) 1. …...
adb server version (19045) doesn‘t match this client (41); killing.的解决办法
我是因为安装了360手机助手,导致adb版本冲突。卸载之后问题解决 根据这个思路,如果产生"adb server version (19045) doesn’t match this client (41); killing."的错误,检查一下是否有多个版本的adb服务。...

实验室的服务器和本地pycharm怎么做图传
提前说一个 自认为 比较重要的一点: 容器中安装opencv,可以先试试用 apt install libopencv-dev python3-opencv 我感觉在图传的时候用的不是 opencv-python 而是ubuntu的opencv库 所以用 apt install 安装试一下 参考 远程调试 qt.qpa.xcb: coul…...

Vue + Element UI 前端篇(五):国际化实现
Vue Element UI 实现权限管理系统 前端篇(五):国际化实现 国际化支持 1.安装依赖 执行以下命令,安装 i18n 依赖。 yarn add vue-i18n $ yarn add vue-i18n yarn add v1.9.4 warning package-lock.json found. Your project …...

[ROS]虚拟机ubuntu18.04系统里面运行usb_cam
首先安装usb_cam sudo apt-get install ros-melodic-usb-cam 运行: roscore roslaunch usb_cam usb_cam-test.launch 如果一运行报错,首先确认是否存在/dev/video0 可以使用ls /dev/video*查看,如果没有就是没有连接摄像头,…...
常用通讯协议比较
dubbo与http1.0的区别 二进制协议:Dubbo使用自定义的二进制协议,而HTTP 1.0使用文本,发送一条相同的消息,http1.0会有更大的网络开销。 连接复用:Dubbo采用单一的多路复用NIO长链接,每个请求都有一个对应的…...

鼠标键盘管理 ShareMouse for Mac最新
软件“ShareMouse”允许您通过单个鼠标和键盘控制多台计算机: 将鼠标移动到您想要控制的计算机的监视器上,指针会神奇地跳转到该计算机。任何鼠标和键盘输入都会传输到相应的计算机。 与网络KVM类似,ShareMouse通过本地LAN传输鼠标移动和点…...

【ALM工具软件】上海道宁与Perforce为您带来用于整个生命周期的应用程序生命周期管理软件
Helix ALM是 用于整个生命周期的 应用程序生命周期管理的ALM软件 具有专用于 需求管理(Helix RM)、测试用例管理(Helix TCM) 问题管理(Helix IM)的功能模块 Helix ALM提供了 无与伦比的可追溯性 您将…...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...

P3 QT项目----记事本(3.8)
3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...
Java 加密常用的各种算法及其选择
在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。 一、对称加密算法…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...
【HTML-16】深入理解HTML中的块元素与行内元素
HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
python爬虫——气象数据爬取
一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用: 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests:发送 …...
tomcat指定使用的jdk版本
说明 有时候需要对tomcat配置指定的jdk版本号,此时,我们可以通过以下方式进行配置 设置方式 找到tomcat的bin目录中的setclasspath.bat。如果是linux系统则是setclasspath.sh set JAVA_HOMEC:\Program Files\Java\jdk8 set JRE_HOMEC:\Program Files…...
前端中slice和splic的区别
1. slice slice 用于从数组中提取一部分元素,返回一个新的数组。 特点: 不修改原数组:slice 不会改变原数组,而是返回一个新的数组。提取数组的部分:slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement
Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...