当前位置: 首页 > news >正文

YOLOv5:对yolov5n模型进一步剪枝压缩

YOLOv5:对yolov5n模型进一步剪枝压缩

  • 前言
  • 前提条件
  • 相关介绍
  • 具体步骤
    • 修改yolov5n.yaml配置文件
    • 单通道数据(黑白图片)
      • 修改models/yolo.py文件
      • 修改train.py文件
    • 剪枝后模型大小
  • 参考

前言

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入YOLO系列专栏、自然语言处理
    专栏或我的个人主页查看
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

前提条件

  • 熟悉Python

相关介绍

  • Python是一种跨平台的计算机程序设计语言。是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。
  • PyTorch 是一个深度学习框架,封装好了很多网络和深度学习相关的工具方便我们调用,而不用我们一个个去单独写了。它分为 CPU 和 GPU 版本,其他框架还有 TensorFlow、Caffe 等。PyTorch 是由 Facebook 人工智能研究院(FAIR)基于 Torch 推出的,它是一个基于 Python 的可续计算包,提供两个高级功能:1、具有强大的 GPU 加速的张量计算(如 NumPy);2、构建深度神经网络时的自动微分机制。
  • YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。它是一个在COCO数据集上预训练的物体检测架构和模型系列,代表了Ultralytics对未来视觉AI方法的开源研究,其中包含了经过数千小时的研究和开发而形成的经验教训和最佳实践。
  • 剪枝是一种通过去除网络中冗余的channels,filters, neurons, or layers以得到一个更轻量级的网络,同时不影响性能的方法。

具体步骤

修改yolov5n.yaml配置文件

  • YOLOv5相关YAML配置里面参数含义,可查阅YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层:
    https://blog.csdn.net/FriendshipTang/article/details/130375883
  • 这里顺带解释一下,depth_multiplewidth_multiple参数含义。
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
 - nc: 8 代表数据集中的类别数目。- depth_multiple: 0.33- 用来控制模型的深度,仅在number≠1时启用。- 如第一个C3层的参数设置为[-1, 3, C3, [128]],其中number=3,表示在yolov5s中含有 3 × 0.331个C3。- width_multiple: 0.50- 用来控制模型的宽度,主要作用于args中的channel_out。- 如第一个Conv层,输出通道数channel_out=64,那么在yolov5s中,会将卷积过程中的卷积核设置为 64 × 0.50 = 32,所以会输出 32 通道的特征图。

depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple

改为

depth_multiple: 0.16  # model depth multiple
width_multiple: 0.125  # layer channel multiple

即可达到减少卷积层数的目的。
在这里插入图片描述

单通道数据(黑白图片)

  • 如果数据集是单通道数据,即黑白图片数据集,还可以修改训练时输入的通道数(yolov5默认输入通道数ch=3,我们可以修改ch=1),减少训练参数。
  • 如果是彩色图片数据集,可跳过此部分的内容

修改models/yolo.py文件

        if m in {Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:c1, c2 = ch[f], args[0]if c2 != no:  # if not outputc2 = make_divisible(c2 * gw, 8)

添加:

        if m in (Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x):c1, c2 = ch[f], args[0]# 添加的内容if i == 0: # 第一层输入,为单通道图片c1 = 1if c2 != no:  # if not outputc2 = make_divisible(c2 * gw, 8)

在这里插入图片描述

        # Define modelch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels

添加:

        # Define modelch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels# 添加的内容self.yaml['ch'] = 1ch = self.yaml['ch']

在这里插入图片描述

修改train.py文件

model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create

改为

# 修改的内容
# model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
model = Model(cfg or ckpt['model'].yaml, ch=1, nc=nc, anchors=hyp.get('anchors')).to(device)  # create

在这里插入图片描述

model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create

改为

# 修改的内容
# model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
model = Model(cfg, ch=1, nc=nc, anchors=hyp.get('anchors')).to(device)  # create

在这里插入图片描述

for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------callbacks.run('on_train_batch_start')ni = i + nb * epoch  # number integrated batches (since train start)imgs = imgs.to(device, non_blocking=True).float() / 255  # uint8 to float32, 0-255 to 0.0-1.0# Warmupif ni <= nw:xi = [0, nw]  # x interp# compute_loss.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())for j, x in enumerate(optimizer.param_groups):# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)])if 'momentum' in x:x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

添加:

for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------callbacks.run('on_train_batch_start')ni = i + nb * epoch  # number integrated batches (since train start)# imgs = imgs.to(device, non_blocking=True).float() / 255  # uint8 to float32, 0-255 to 0.0-1.0# 添加的内容,目的是将训练集的图片变为单通道图片(黑白图片)imgs = imgs[:, 0, :, :].unsqueeze(1).to(device, non_blocking=True).float() / 255 # Warmupif ni <= nw:xi = [0, nw]  # x interp# compute_loss.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())for j, x in enumerate(optimizer.param_groups):# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)])if 'momentum' in x:x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

在这里插入图片描述

剪枝后模型大小

  • 原来的yolo5n模型大小为3.5m,剪枝训练后的yolo5n模型大小为2.6m。

参考

[1] https://github.com/ultralytics/yolov5

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入YOLO系列专栏、自然语言处理
    专栏或我的个人主页查看
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

相关文章:

YOLOv5:对yolov5n模型进一步剪枝压缩

YOLOv5&#xff1a;对yolov5n模型进一步剪枝压缩 前言前提条件相关介绍具体步骤修改yolov5n.yaml配置文件单通道数据&#xff08;黑白图片&#xff09;修改models/yolo.py文件修改train.py文件 剪枝后模型大小 参考 前言 由于本人水平有限&#xff0c;难免出现错漏&#xff0c;…...

大数据(八):Pandas的基础应用详解(五)

专栏介绍 结合自身经验和内部资料总结的Python教程,每天3-5章,最短1个月就能全方位的完成Python的学习并进行实战开发,学完了定能成为大佬!加油吧!卷起来! 全部文章请访问专栏:《Python全栈教程(0基础)》 再推荐一下最近热更的:《大厂测试高频面试题详解》 该专栏对…...

【算法】归并排序 详解

归并排序 详解 归并排序代码实现1. 递归版本2. 非递归版本 排序&#xff1a; 排序&#xff0c;就是使一串记录&#xff0c;按照其中的某个或某些关键字的大小&#xff0c;递增或递减的排列起来的操作。 稳定性&#xff1a; 假定在待排序的记录序列中&#xff0c;存在多个具有相…...

linux 进程隔离Namespace 学习

一、linux namespace 介绍 1.1、概念 Linux Namespace是Linux内核提供的一种机制&#xff0c;它用于隔离不同进程的资源视图&#xff0c;使得每个进程都拥有独立的资源空间&#xff0c;从而实现进程之间的隔离和资源管理。 Linux Namespace的设计目标是为了解决多个进程之间…...

【MySQL】事务 详解

事务 详解 一. 为什么使用事务二. 事务的概念三. 使用四. 事务的特性原子性&#xff08;Atomicity&#xff09;一致性&#xff08;Consistency&#xff09;隔离性&#xff08;Isolation&#xff09;持久性&#xff08;Durability&#xff09; 五. 事务并发所带来的问题脏读问题…...

爬虫到底难在哪里?

目录 爬虫到底难在哪里 怎么学习爬虫 注意事项 爬虫工具 总结 学习Python爬虫的难易程度因人而异&#xff0c;对于具备编程基础的人来说&#xff0c;学习Python爬虫并不困难。Python语言本身比较简单易学&#xff0c;适合初学者使用。 爬虫到底难在哪里 爬虫的难点主要包…...

linux常用命令行整理

1、linux的以及目录 bin 二进制可执行文件sbin 二进制可执行文件(root用户权限)etc 系统管理和配置文件,例如常见host文件home 用户文件的根目录usr 用户存放系统应用程序(共享系统资源)opt 可选的应用程序proc 虚拟文件系统root 超级用户dev 存放设备文件mnt 系统管理员安装临…...

python字符串相关

python字符串相关 一、reverse() 函数 只能反转 列表二、reversed() 反转元组字符串等等 返回迭代器三、join和reversed反转字符串四、join串联字符串&#xff08;join连接对象仅限字符串、储存字符串的元组、列表、字典&#xff09;数字对象可通过str()转化为字符串⭐对象为字…...

JavaScript学习笔记01

JavaScript笔记01 什么是 JavaScript JavaScript 是一门世界上最流行的脚本语言&#xff0c;它是一种弱类型的脚本语言&#xff0c;其代码不需要经过编译&#xff0c;而是由浏览器解释运行&#xff0c;用于控制网页的行为。 发展历史 参考&#xff1a;JavaScript的起源故事…...

golang 通用的 grpc http 基础开发框架

go-moda golang 通用的 grpc http 基础开发框架仓库地址: https://github.com/webws/go-moda仓库一直在更新,欢迎大家吐槽和指点 特性 transport: 集成 http&#xff08;echo、gin&#xff09;和 grpc。tracing: openTelemetry 实现微务链路追踪pprof: 分析性能config: 通用…...

FSK解调技术的FPGA实现

本原创文章由深圳市小眼睛科技有限公司创作&#xff0c;版权归本公司所有&#xff0c;如需转载&#xff0c;需授权并注明出处 一、FSK信号的解调原理 FSK信号的解调也有非相干和相干两种&#xff0c;FSK信号可以看作是用两个频率源交替传输得到的&#xff0c;所以FSK的接收机由…...

Matlab图像处理-高斯低通滤波器

高通滤波 图像的边缘、细节主要位于高频部分&#xff0c;而图像的模糊是由于高频成分比较弱产生的。高通滤波就是为了高消除模糊&#xff0c;突出边缘。因此采用高通滤波器让高频成分通过&#xff0c;消除低频噪声成分削弱&#xff0c;再经傅里叶逆变换得到边缘锐化的图像。 …...

文件上传之图片马混淆绕过与条件竞争

一、图片马混淆绕过 1.上传gif imagecreatefromxxxx函数把图片内容打散&#xff0c;&#xff0c;但是不会影响图片正常显示 $is_upload false; $msg null; if (isset($_POST[submit])){// 获得上传文件的基本信息&#xff0c;文件名&#xff0c;类型&#xff0c;大小&…...

代码随想录二刷day16

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、力扣104. 二叉树的最大深度二、力扣559. N 叉树的最大深度三、力扣111. 二叉树的最小深度三、力扣力扣222. 完全二叉树的节点个数 前言 一、力扣104. 二叉树…...

【开发】安防监控/视频存储/视频汇聚平台EasyCVR优化播放体验的小tips

视频云存储/安防监控EasyCVR视频汇聚平台基于云边端智能协同&#xff0c;可实现视频监控直播、视频轮播、视频录像、云存储、回放与检索、智能告警、服务器集群、语音对讲、云台控制、电子地图、H.265自动转码H.264、平台级联等。为了便于用户二次开发、调用与集成&#xff0c;…...

力扣(LeetCode)算法_C++—— 只出现一次的数字

给你一个 非空 整数数组 nums &#xff0c;除了某个元素只出现一次以外&#xff0c;其余每个元素均出现两次。找出那个只出现了一次的元素。 你必须设计并实现线性时间复杂度的算法来解决此问题&#xff0c;且该算法只使用常量额外空间。 示例 1 &#xff1a; 输入&#xff1…...

Windows配置SonarQube代码审查工具详细步骤(附带IDEA SonarLint插件使用)

文章目录 环境说明以及准备一. SonarQube的下载与安装二. 添加SonarQube项目三. 使用Maven命令上传代码到SonarQube四. IDEA安装SonarLint插件 环境说明以及准备 本篇博客使用的SonarQube版本为9.8&#xff0c;注意JDK 1.8已经不能支持 NameVersionDownLoad LinkSonarQube9.8…...

【Unity3D】UI Toolkit元素

1 前言 UI Toolkit简介 中介绍了 UI Builder、样式属性、UQuery、Debugger&#xff0c;UI Toolkit容器 中介绍了 VisualElement、ScrollView、ListView、GroupBox 等容器&#xff0c;UI Toolkit样式选择器 中介绍了简单选择器、复杂选择器、伪类选择器等样式选择器&#xff0c;…...

Task :app:compileDebugKotlin FAILED

gradle.properties 里面加上 android.enableJetifiertrue...

Android——数据存储(一)(二十一)

1. 数据存储 1.1 知识点 &#xff08;1&#xff09;掌握Android数据存储的分类&#xff1b; &#xff08;2&#xff09;可以使用SharedPreferences存储数据。 1.2 具体内容 对于我们数据的存储而言&#xff0c;Android一共提供了5个数据存储的方式&#xff1a;SharedPrefe…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

Java毕业设计:WML信息查询与后端信息发布系统开发

JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发&#xff0c;实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构&#xff0c;服务器端使用Java Servlet处理请求&#xff0c;数据库采用MySQL存储信息&#xff0…...

如何更改默认 Crontab 编辑器 ?

在 Linux 领域中&#xff0c;crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用&#xff0c;用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益&#xff0c;允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...

Git常用命令完全指南:从入门到精通

Git常用命令完全指南&#xff1a;从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...

PostgreSQL——环境搭建

一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在&#xff0…...

【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)

前言&#xff1a; 双亲委派机制对于面试这块来说非常重要&#xff0c;在实际开发中也是经常遇见需要打破双亲委派的需求&#xff0c;今天我们一起来探索一下什么是双亲委派机制&#xff0c;在此之前我们先介绍一下类的加载器。 目录 ​编辑 前言&#xff1a; 类加载器 1. …...

Python训练营-Day26-函数专题1:函数定义与参数

题目1&#xff1a;计算圆的面积 任务&#xff1a; 编写一个名为 calculate_circle_area 的函数&#xff0c;该函数接收圆的半径 radius 作为参数&#xff0c;并返回圆的面积。圆的面积 π * radius (可以使用 math.pi 作为 π 的值)要求&#xff1a;函数接收一个位置参数 radi…...