计算机竞赛 基于深度学习的动物识别 - 卷积神经网络 机器视觉 图像识别
文章目录
- 0 前言
 - 1 背景
 - 2 算法原理
 - 2.1 动物识别方法概况
 - 2.2 常用的网络模型
 - 2.2.1 B-CNN
 - 2.2.2 SSD
 
- 3 SSD动物目标检测流程
 - 4 实现效果
 - 5 部分相关代码
 - 5.1 数据预处理
 - 5.2 构建卷积神经网络
 - 5.3 tensorflow计算图可视化
 - 5.4 网络模型训练
 - 5.5 对猫狗图像进行2分类
 
- 6 最后
 
0 前言
🔥 优质竞赛项目系列,今天要分享的是
基于深度学习的动物识别算法研究与实现
该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
1 背景
目前,由于计算机能力和相关理论的发展获得了重大突破,基于深度学习的图像检测与识别技术已经广泛应用到人们的生产生活中。学长将深度学习的技术应用到野生动物图像识别中,优化了传统的识别方法,形成对野生动物图像更为准确的识别,为实现高效的野生动物图像识别提供了可能。不同于传统的野生动物识别,基于深度学习的野生动物识别技术可以捕获到野生动物更加细致的信息,有利于对野生动物进行更加准确的识别和研究。因此,对基于深度学习的野生动物识别和研究,可以更好的帮助社会管理者和政府全面有效的对野生动物进行保护和监管,这也正是保护和识别野生动物的关键,同时这对整个自然和社会的和谐发展具有极大的推动作用。
2 算法原理
2.1 动物识别方法概况
基于人工特征的野生动物识别方法主要通过人工对野生动物图像中具有辨识度的特征信息进行提取,并通过特征比对的方式就可以对野生动物所属的类别进行识别判断。
在深度学习技术普及之前,传统的数字图像处理技术与传统机器学习技术一直是研究的热点。传统的数字图像处理技术有模块分割、降低噪声点、边缘检测等方法。传统的机器学习技术有支持向量机、随机森林算法、BP
 神经网络算法等。
深度学习技术是通过计算机模拟人类大脑的分层表达结构来建立网络模型,从原始数据集中对相关信息逐层提取。之后通过建立相应的神经网络对数据进行学习和分析,从而提高对目标预测和识别的准确率。如今,深度学习技术已经相对成熟,在对目标进行特征提取方面,卷积神经网络技术逐渐取代了传统的图像处理技术,并且在人类的生产生活中得到了广泛应用,这为研究野生动物更高效的识别方法奠定了基础。
2.2 常用的网络模型
图像识别是指对原始图像进行整体分析来达到预测原始图像所属类别的技术。计算机视觉领域中对图像识别技术进行了优化,与此同时,深度学习技术也对图像识别领域展开了突破。目前在图像识别领域中,研究人员开始使用深度学习的技术,并通过在实际应用中发现,基于深度学习的识别技术比传统的识别技术效果更好,且更具有优势。
2.2.1 B-CNN
双线性卷积神经网络(Bilinear
 CNN,B-CNN)[34]是用两个卷积神经网络对图像进行特征提取,然后使用相应的函数将得到所有特征进行组合,组合的数据带入到分类器中进行分类。

2.2.2 SSD
经典的 SSD 模型是由经典网络和特征提取网络组成。
通过引入性能更好的特征提取网络对 SSD
 目标检测模型进行了优化。Fu[49]等人提出了增加卷积神经网络层数和深度的方法用于提高识别准确率。通过实际应用之后,发现该方法识别准确率确实得到了一定程度的提高,但是模型结构却越来越复杂,同时对深层次的网络训练也越来越困难。

3 SSD动物目标检测流程

学长首先对 DenseNet-169 网络进行初始化,使用 DenseNet-169 网络作为目标检测的前置网络结构,并运用迁移学习的方法对
 DenseNet-169 进行预训练,并将Snapshot Serengeti数据集下的权重值迁移到野生动物检测任务中,使数据集的训练速度得到提升。将
 DenseNet-169 作为前置网络置于 SSD 中的目标提取检测网络之前,更换完前置网络的 SSD 目标检测网络依然完整。
4 实现效果

 
做一个GUI交互界面

5 部分相关代码
5.1 数据预处理
import cv2 as cvimport osimport numpy as npimport randomimport pickleimport timestart_time = time.time()data_dir = './data'batch_save_path = './batch_files'# 创建batch文件存储的文件夹os.makedirs(batch_save_path, exist_ok=True)# 图片统一大小:100 * 100# 训练集 20000:100个batch文件,每个文件200张图片# 验证集 5000:一个测试文件,测试时 50张 x 100 批次# 进入图片数据的目录,读取图片信息all_data_files = os.listdir(os.path.join(data_dir, 'train/'))# print(all_data_files)# 打算数据的顺序random.shuffle(all_data_files)all_train_files = all_data_files[:20000]all_test_files = all_data_files[20000:]train_data = []train_label = []train_filenames = []test_data = []test_label = []test_filenames = []# 训练集for each in all_train_files:img = cv.imread(os.path.join(data_dir,'train/',each),1)resized_img = cv.resize(img, (100,100))img_data = np.array(resized_img)train_data.append(img_data)if 'cat' in each:train_label.append(0)elif 'dog' in each:train_label.append(1)else:raise Exception('%s is wrong train file'%(each))train_filenames.append(each)# 测试集for each in all_test_files:img = cv.imread(os.path.join(data_dir,'train/',each), 1)resized_img = cv.resize(img, (100,100))img_data = np.array(resized_img)test_data.append(img_data)if 'cat' in each:test_label.append(0)elif 'dog' in each:test_label.append(1)else:raise Exception('%s is wrong test file'%(each))test_filenames.append(each)print(len(train_data), len(test_data))# 制作100个batch文件start = 0end = 200for num in range(1, 101):batch_data = train_data[start: end]batch_label = train_label[start: end]batch_filenames = train_filenames[start: end]batch_name = 'training batch {} of 15'.format(num)all_data = {'data':batch_data,'label':batch_label,'filenames':batch_filenames,'name':batch_name}with open(os.path.join(batch_save_path, 'train_batch_{}'.format(num)), 'wb') as f:pickle.dump(all_data, f)start += 200end += 200# 制作测试文件all_test_data = {'data':test_data,'label':test_label,'filenames':test_filenames,'name':'test batch 1 of 1'}with open(os.path.join(batch_save_path, 'test_batch'), 'wb') as f:pickle.dump(all_test_data, f)end_time = time.time()print('制作结束, 用时{}秒'.format(end_time - start_time)) 
5.2 构建卷积神经网络
cnn卷积神经网络的编写如下,编写卷积层、池化层和全连接层的代码
conv1_1 = tf.layers.conv2d(x, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_1')conv1_2 = tf.layers.conv2d(conv1_1, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_2')pool1 = tf.layers.max_pooling2d(conv1_2, (2, 2), (2, 2), name='pool1')conv2_1 = tf.layers.conv2d(pool1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_1')conv2_2 = tf.layers.conv2d(conv2_1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_2')pool2 = tf.layers.max_pooling2d(conv2_2, (2, 2), (2, 2), name='pool2')conv3_1 = tf.layers.conv2d(pool2, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_1')conv3_2 = tf.layers.conv2d(conv3_1, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_2')pool3 = tf.layers.max_pooling2d(conv3_2, (2, 2), (2, 2), name='pool3')conv4_1 = tf.layers.conv2d(pool3, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_1')conv4_2 = tf.layers.conv2d(conv4_1, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_2')pool4 = tf.layers.max_pooling2d(conv4_2, (2, 2), (2, 2), name='pool4')flatten = tf.layers.flatten(pool4)fc1 = tf.layers.dense(flatten, 512, tf.nn.relu)fc1_dropout = tf.nn.dropout(fc1, keep_prob=keep_prob)fc2 = tf.layers.dense(fc1, 256, tf.nn.relu)fc2_dropout = tf.nn.dropout(fc2, keep_prob=keep_prob)fc3 = tf.layers.dense(fc2, 2, None) 
5.3 tensorflow计算图可视化
self.x = tf.placeholder(tf.float32, [None, IMAGE_SIZE, IMAGE_SIZE, 3], 'input_data')self.y = tf.placeholder(tf.int64, [None], 'output_data')self.keep_prob = tf.placeholder(tf.float32)# 图片输入网络中fc = self.conv_net(self.x, self.keep_prob)self.loss = tf.losses.sparse_softmax_cross_entropy(labels=self.y, logits=fc)self.y_ = tf.nn.softmax(fc) # 计算每一类的概率self.predict = tf.argmax(fc, 1)self.acc = tf.reduce_mean(tf.cast(tf.equal(self.predict, self.y), tf.float32))self.train_op = tf.train.AdamOptimizer(LEARNING_RATE).minimize(self.loss)self.saver = tf.train.Saver(max_to_keep=1) 
最后的saver是要将训练好的模型保存到本地。
5.4 网络模型训练
然后编写训练部分的代码,训练步骤为1万步
acc_list = []with tf.Session() as sess:sess.run(tf.global_variables_initializer())for i in range(TRAIN_STEP):train_data, train_label, _ = self.batch_train_data.next_batch(TRAIN_SIZE)eval_ops = [self.loss, self.acc, self.train_op]eval_ops_results = sess.run(eval_ops, feed_dict={self.x:train_data,self.y:train_label,self.keep_prob:0.7})loss_val, train_acc = eval_ops_results[0:2]acc_list.append(train_acc)if (i+1) % 100 == 0:acc_mean = np.mean(acc_list)print('step:{0},loss:{1:.5},acc:{2:.5},acc_mean:{3:.5}'.format(i+1,loss_val,train_acc,acc_mean))if (i+1) % 1000 == 0:test_acc_list = []for j in range(TEST_STEP):test_data, test_label, _ = self.batch_test_data.next_batch(TRAIN_SIZE)acc_val = sess.run([self.acc],feed_dict={self.x:test_data,self.y:test_label,self.keep_prob:1.0})test_acc_list.append(acc_val)print('[Test ] step:{0}, mean_acc:{1:.5}'.format(i+1, np.mean(test_acc_list)))# 保存训练后的模型os.makedirs(SAVE_PATH, exist_ok=True)self.saver.save(sess, SAVE_PATH + 'my_model.ckpt') 
训练结果如下:

5.5 对猫狗图像进行2分类


6 最后
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
相关文章:
计算机竞赛 基于深度学习的动物识别 - 卷积神经网络 机器视觉 图像识别
文章目录 0 前言1 背景2 算法原理2.1 动物识别方法概况2.2 常用的网络模型2.2.1 B-CNN2.2.2 SSD 3 SSD动物目标检测流程4 实现效果5 部分相关代码5.1 数据预处理5.2 构建卷积神经网络5.3 tensorflow计算图可视化5.4 网络模型训练5.5 对猫狗图像进行2分类 6 最后 0 前言 &#…...
2023-9-8 求组合数(二)
题目链接:求组合数 II #include <iostream> #include <algorithm>using namespace std;typedef long long LL; const int mod 1e9 7; const int N 100010;// 阶乘,阶乘的逆 int fact[N], infact[N];LL qmi(int a, int k, int p) {int res…...
k8s service的一些特性
文章目录 Service分发负载的策略同一端口通过不同协议暴露Headless Service的负载分发策略 Service分发负载的策略 大家都知道,一个service可以对应多个pod,那么一定要有一些方法来把service接收到的请求(负载)转发到pod上。 一般…...
C++中std::enable_if和SFINAE介绍
作为一个标准的C++模板类,我们先看下enable_if的定义: // STRUCT TEMPLATE enable_if template <bool _Test, class _Ty = void> struct enable_if {}; // no member "type" when !_Testtemplate <class _Ty> struct enable_if<true, _Ty> { //…...
华为OD机考算法题:数字加减游戏
目录 题目部分 解读与分析 代码实现 题目部分 题目数字加减游戏难度难题目说明小明在玩一个数字加减游戏,只使用加法或者减法,将一个数字 s 变成数字 t 。 每个回合,小明可以用当前的数字加上或减去一个数字。 现在有两种数字可以用来加减…...
WPF命令
在设计良好的Windows应用程序中,应用程序逻辑不应位于事件处理程序中,而应在更高层的方法中编写代码。其中的每个方法都代表单独的应用程序任务。每个任务可能依赖其他库。 使用这种设计最明显的方式是在需要的地方添加事件处理程序,并使用各…...
Unity中Shader的屏幕抓取 GrabPass
文章目录 前言一、抓取1、抓取指令2、在使用抓取的屏幕前,需要像使用属性一样定义一下,_GrabTexture这个名字是Unity定义好的 前言 Unity中Shader的屏幕抓取 GrabPass 一、抓取 1、抓取指令 屏幕的抓取需要使用一个Pass GrabPass{} GrabPass{“NAME”} 2、在使用…...
手撕 队列
队列的基本概念 只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具有先进先出 入队列:进行插入操作的一端称为队尾 出队列:进行删除操作的一端称为队头 队列用链表实现 队列的实现 队列的定义 队列…...
【autodl/linux配环境心得:conda/本地配cuda,cudnn及pytorch心得】-未完成
linux配环境心得:conda/本地配cuda,cudnn及pytorch心得 我们服务器遇到的大多数找不到包的问题一,服务器安装cuda和cudnn使用conda在线安装cuda和cudnn使用conda进行本地安装检查conda安装的cuda和cudnn本地直接安装cuda和cudnn方法一&#x…...
macOS Ventura 13.5.2(22G91)发布,附黑/白苹果镜像下载地址
系统介绍(下载请百度搜索:黑果魏叔) 黑果魏叔 9 月 8 日消息,苹果今日向 Mac 电脑用户推送了 macOS 13.5.2 更新(内部版本号:22G91),本次更新距离上次发布隔了 21 天。 本次更新查…...
vue 子组件向父组件传递参数 子传父
子组件中写: this.$emit(RowCount,res.data.RowCount); 父组件中写: getMFGLRowCount(val){ //父组件中的方法: 接收子组件传过来的参数值赋值给父组件的变量 //this.totalCount val; alert("这…...
自然语言处理学习笔记(八)———— 准确率
目录 1.准确率定义 2.混淆矩阵与TP/FN/FP/TN 3. 精确率 4.召回率 5.F1值 6.中文分词的P、R、F1计算 7.实现 1.准确率定义 准确率是用来衡量一个系统的准确程度的值,可以理解为一系列评测指标。当预测与答案的数量相等时,准确率指的是系统做出正确判…...
Matlab 如何选择窗函数和 FFT 的长度
Matlab 如何选择窗函数和 FFT 的长度 1、常用的四种窗函数 对于实际信号序列,如何选取窗函数呢?一般来说,选择第一旁瓣衰减大,旁瓣峰值衰减快的窗函数有利于緩解截断过程中产生的頻泄漏问题。但具有这两个特性的窗函数࿰…...
node.js下载安装环境配置以及快速使用
目录 一、下载 二、安装 三、测试安装是否成功 四、配置环境 五、测试配置环境是否成功 六、安装淘宝镜像 七、快速上手 1、建立一个自己的工作目录 2、下载工作代码 八、各种配置文件匹配问题入坑 九、总结 一、下载 Node.js 中文网 想选择其他版本或者其他系统使用…...
使用栈检查括号的合法性 C 实现
使用栈检查括号的合法性 思路讲解:首先从数组数组0下标开始,如果是左括号直接无脑压入栈,直到出现右括号开始判断合法与否。遇到右括号分两种情况,第一种是空栈的情况,也就是说我们第一个字符就是右括号,那…...
小白备战大厂算法笔试(四)——哈希表
文章目录 哈希表常用操作简单实现冲突与扩容链式地址开放寻址线性探测多次哈希 哈希表 哈希表,又称散列表,其通过建立键 key 与值 value 之间的映射,实现高效的元素查询。具体而言,我们向哈希表输入一个键 key ,则可以…...
云原生Kubernetes:pod基础
目录 一、理论 1.pod 2.pod容器分类 3.镜像拉取策略(image PullPolicy) 二、实验 1.Pod容器的分类 2.镜像拉取策略 三、问题 1.apiVersion 报错 2.pod v1版本资源未注册 3.取行显示指定pod信息 四、总结 一、理论 1.pod (1) 概念 Pod是ku…...
Ansys Zemax | 手机镜头设计 - 第 3 部分:使用 STAR 模块和 ZOS-API 进行 STOP 分析
本文是 3 篇系列文章的一部分,该系列文章将讨论智能手机镜头模组设计的挑战,从概念、设计到制造和结构变形的分析。本文是三部分系列的第三部分。它涵盖了使用 Ansys Zemax OpticStudio Enterprise 版本提供的 STAR 技术对智能手机镜头进行自动的结构、热…...
CSP-J初赛复习大题整理笔记
本篇全是整理,为比赛准备. 在这里插入代码片 #include<cstdio> using namespace std; int n, m; int a[100], b[100];int main() {scanf_s("%d%d", &n, &m);for (int i 1; i < n; i)a[i] b[i] 0;//将两个数组清0,这…...
面试题 ⑤
1、TCP与UDP的区别 UDPTCP是否连接无连接,即刻传输面向连接,三次握手是否可靠不可靠传输,网络波动拥堵也不会减缓传输可靠传输,使用流量控制和拥塞控制连接对象个数支持一对一,一对多,多对一和多对多交互通…...
XCTF-web-easyupload
试了试php,php7,pht,phtml等,都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接,得到flag...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...
聊聊 Pulsar:Producer 源码解析
一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
USB Over IP专用硬件的5个特点
USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中,从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备(如专用硬件设备),从而消除了直接物理连接的需要。USB over IP的…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
动态 Web 开发技术入门篇
一、HTTP 协议核心 1.1 HTTP 基础 协议全称 :HyperText Transfer Protocol(超文本传输协议) 默认端口 :HTTP 使用 80 端口,HTTPS 使用 443 端口。 请求方法 : GET :用于获取资源,…...
Java数值运算常见陷阱与规避方法
整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...
