05 CNN 猴子类别检测
一、数据集下载
kaggle数据集[10 monkey]
二、数据集准备
2.1 指定路径
from tensorflow import keras
import tensorflow as tf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plttrain_dir = '/newdisk/darren_pty/CNN/ten_monkey/training/'
valid_dir = '/newdisk/darren_pty/CNN/ten_monkey/validation/'
label_file = '/newdisk/darren_pty/CNN/ten_monkey/monkey_labels.txt'labels = pd.read_csv(label_file, header=0)
print(labels)
2.2 数据增强
# 图片数据生成器 数据增加
train_datagen = keras.preprocessing.image.ImageDataGenerator(rescale = 1. / 255, #jpg 0-255转变为 0-1rotation_range = 40, #图片翻转width_shift_range = 0.2, # 移动height_shift_range = 0.2, # 移动shear_range = 0.2, #裁剪zoom_range = 0.2, #缩放比例horizontal_flip = True, #翻转vertical_flip = True,fill_mode = 'nearest' #填充模式
)
三、从数据集中生成数据
height = 128
width = 128
channels = 3
batch_size = 32
num_classes = 10train_generator = train_datagen.flow_from_directory(train_dir,target_size = (height, width),batch_size = batch_size,shuffle = True,seed = 7,class_mode = 'categorical')valid_datagen = keras.preprocessing.image.ImageDataGenerator(rescale = 1. / 255
)
valid_generator = valid_datagen.flow_from_directory(valid_dir,target_size = (height, width),batch_size = batch_size,shuffle = True,seed = 7,class_mode = 'categorical')
print(train_generator.samples)
print(valid_generator.samples)
Found 1098 images belonging to 10 classes.
Found 272 images belonging to 10 classes.
1098
272
四、模型
train_num = train_generator.samples
valid_num = valid_generator.samplesx, y = train_generator.next()
print(x.shape, y.shape)
print(y)model = keras.models.Sequential()
# 卷积
model.add(keras.layers.Conv2D(filters = 32,kernel_size = 3,padding = 'same',activation='relu',# batch_size, height, width, channelsinput_shape=(128, 128, 3)))model.add(keras.layers.Conv2D(filters = 32,kernel_size = 3,padding = 'same',activation='relu'))
# 池化
model.add(keras.layers.MaxPool2D()) #model.add(keras.layers.Conv2D(filters = 64,kernel_size = 3,padding = 'same',activation='relu'))
model.add(keras.layers.Conv2D(filters = 64,kernel_size = 3,padding = 'same',activation='relu'))
# 池化
model.add(keras.layers.MaxPool2D())
model.add(keras.layers.Conv2D(filters = 128,kernel_size = 3,padding = 'same',activation='relu'))
model.add(keras.layers.Conv2D(filters = 128,kernel_size = 3,padding = 'same',activation='relu'))
# 池化, 向下取整
model.add(keras.layers.MaxPooling2D())model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(512, activation='relu'))
model.add(keras.layers.Dense(256, activation='relu'))
model.add(keras.layers.Dense(10, activation='softmax'))model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])print(model.summary())
五、训练
history = model.fit(train_generator,steps_per_epoch = train_num // batch_size,epochs = 10,validation_data = valid_generator,validation_steps = valid_num // batch_size)
相关文章:
05 CNN 猴子类别检测
一、数据集下载 kaggle数据集[10 monkey] 二、数据集准备 2.1 指定路径 from tensorflow import keras import tensorflow as tf import numpy as np import pandas as pd import matplotlib.pyplot as plttrain_dir /newdisk/darren_pty/CNN/ten_monkey/training/ valid_d…...
【C#】关于Array.Copy 和 GC
关于Array.Copy 和 GC //一个简单的 数组copy 什么情况下会触发GC呢[ReliabilityContract(Consistency.MayCorruptInstance, Cer.MayFail)]public static void Copy(Array sourceArray,long sourceIndex,Array destinationArray,long destinationIndex,long length);当源和目…...
Vue前端框架08 Vue框架简介、VueAPI风格、模板语法、事件处理、数组变化侦测
目录 一、Vue框架1.1渐进式框架1.2 Vue的版本 二、VueAPI的风格三、Vue开发准备工作四、模板语法文本插值属性绑定条件渲染列表渲染key管理状态 四、事件处理定义事件事件参数事件修饰符 五、数组变化侦测 一、Vue框架 渐进式JavaScript框架,易学易用,性…...
WebStorm使用PlantUML
虽然 WebStorm 没有官方的 PlantUML 插件,但我们可以使用第三方插件 PlantUML Integration 来实现在 WebStorm 中使用 PlantUML。 以下是使用 PlantUML Integration 插件,在 WebStorm 中设计一个 Vue 模块的步骤: 安装 PlantUML Integratio…...
Python做批处理,给安卓设备安装应用和传输图片
场景:几台新安卓平板过来了,需要安4个应用并复制4张图片。手工操作其实也未尝不可,但是能自动化起来,岂不是美哉。 python调用系统命令,我选用了os.system,最简单粗暴,也能有回显,就…...
如何获取springboot中所有的bean
代码 Component public class TestS {Autowiredprivate Map<String, Object> allBean Maps.newConcurrentMap();public void testA(){System.out.println("测试下");}}这段代码是一个使用 Spring Framework 的依赖注入(DI)功能的示例。…...
大数据技术之Hadoop:HDFS存储原理篇(五)
目录 一、原理介绍 1.1 Block块 1.2 副本机制 二、fsck命令 2.1 设置默认副本数量 2.2 临时设置文件副本大小 2.3 fsck命令检查文件的副本数 2.4 block块大小的配置 三、NameNode元数据 3.1 NameNode作用 3.2 edits文件 3.3 FSImage文件 3.4 元素据合并控制参数 …...
用C语言实现牛顿摆控制台动画
题目 用C语言实现牛顿摆动画,模拟小球的运动,如图所示 拆解 通过控制台API定位输出小球运动的只是2边小球,中间小球不运动,只需要固定位置输出左边小球上升下降时,X、Y轴增量一致。右边小球上升下降时,X、…...
如何自己开发一个前端监控SDK
最近在负责团队前端监控系统搭建的任务。因为我们公司有统一的日志存储平台、日志清洗平台和基于 Grafana 搭建的可视化看板,就剩日志的采集和上报需要自己实现了,所以决定封装一个前端监控 SDK 来完成日志的采集和上报。 架构设计 因为想着以后有机会…...
node.js笔记
首先:浏览器能执行 JS 代码,依靠的是内核中的 V8 引擎(C 程序) 其次:Node.js 是基于 Chrome V8 引擎进行封装(运行环境) 区别:都支持 ECMAScript 标准语法,Node.js 有独立…...
mysql 增量备份与恢复使用详解
目录 一、前言 二、数据备份策略 2.1 全备 2.2 增量备份 2.3 差异备份 三、mysql 增量备份概述 3.1 增量备份实现原理 3.1.1 基于日志的增量备份 3.1.2 基于时间戳的增量备份 3.2 增量备份常用实现方式 3.2.1 基于mysqldump增量备份 3.2.2 基于第三方备份工具进行增…...
9月5日上课内容 第一章 NoSQL之Redis配置与优化
本章结构 关系型数据库和非关系型数据库 概念介绍 ●关系型数据库: 关系型数据库是一个结构化的数据库,创建在关系模型(二维表格模型)基础上,一般面向于记录。 SQL 语句(标准数据查询语言)就是…...
QT 第四天
一、设置一个闹钟 .pro QT core gui texttospeechgreaterThan(QT_MAJOR_VERSION, 4): QT widgetsCONFIG c11# The following define makes your compiler emit warnings if you use # any Qt feature that has been marked deprecated (the exact warnings # depend…...
nrf52832 GPIO输入输出设置
LED_GPIO #define LED_START 17 #define LED_0 17 #define LED_1 18 #define LED_2 19 #define LED_3 20 #define LED_STOP 20设置位输出模式: nrf_gpio_cfg_output(LED_0); 输出高电平:nrf_gpio_pin_set(LED_0); 输…...
MyBatis 动态 SQL 实践教程
一、MyBatis动态 sql 是什么 动态 SQL 是 MyBatis 的强大特性之一。在 JDBC 或其它类似的框架中,开发人员通常需要手动拼接 SQL 语句。根据不同的条件拼接 SQL 语句是一件极其痛苦的工作。例如,拼接时要确保添加了必要的空格,还要注意去掉列…...
CSS 斜条纹进度条
效果: 代码: html: <div class"active-line flex"><!-- lineWidth:灰色背景 --><div class"bg-line"><div v-for"n in 30" class"gray"></div></div><div…...
JavaScript(1)每天10个小知识点
目录 1. JavaScript 有哪些数据类型,它们的区别?**2. 数据类型检测的方式有哪些**3. null 和 undefined 区别**4. intanceof 操作符的实现原理及实现**5. 如何获取安全的 undefined 值?**6. Object.is() 与比较操作符 “”、“” 的区别*…...
scanf和scanf_s函数详解
目录 引言: 1.scanf函数的用法: 2.scanf_s函数的用法: 3.scanf和scanf_s的区别: 结论: 引言: 在C语言中,输入函数scanf是非常常用的函数之一,它可以从标准输入流中读取数据并将其…...
基于SSM的在线购物系统
末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:采用JSP技术开发 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目&#x…...
认识JVM的内存模型
从上一节了解到整个JVM大的内存区域,分为线程共享的heap(堆),MethodArea(方法区),和线程独享的 The pc Register(程序计数器)、Java Virtual Machine Stacks(…...
装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...
利用ngx_stream_return_module构建简易 TCP/UDP 响应网关
一、模块概述 ngx_stream_return_module 提供了一个极简的指令: return <value>;在收到客户端连接后,立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量(如 $time_iso8601、$remote_addr 等)&a…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
在四层代理中还原真实客户端ngx_stream_realip_module
一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...
微信小程序 - 手机震动
一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注:文档 https://developers.weixin.qq…...
高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...
Java 加密常用的各种算法及其选择
在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。 一、对称加密算法…...
图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...
docker 部署发现spring.profiles.active 问题
报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...
