当前位置: 首页 > news >正文

搭建自己的OCR服务,第一步:选择合适的开源OCR项目

一、OCR是什么?

光学字符识别(Optical Character Recognition, OCR)是指对文本资料的图像文件进行分析识别处理,获取文字及版面信息的过程。

亦即将图像中的文字进行识别,并以文本的形式返回。

二、OCR的基本流程

1. 图像输入、预处理:

  不同的图像格式有不同的存储、压缩方式,目前有OpenCV、CxImage等。

2. 二值化:

  如今数码摄像头拍摄的图片大多是彩色图像,彩色图像所含信息量巨大,不适用于OCR技术。为了让计算机更快的、更好地进行OCR相关计算,

  我们需要先对彩色图进行处理,使图片只剩下前景信息与背景信息。二值化也可以简单地将其理解为“黑白化”。

3. 图像降噪:

  对于不同的图像根据噪点的特征进行去噪的过程称为降噪。

4. 倾斜校正:

  由于一般用户,在拍照文档时,难以拍摄得完全符合水平平齐与竖直平齐(我本人就经常拍的歪歪扭扭),

  因此拍照出来的图片不可避免的产生倾斜,这就需要图像处理软件进行校正。 

5. 版面分析:

  将文档图片分段落,分行的过程称为版面分析。 

6. 字符切割:

  由于拍照、书写条件的限制,经常造成字符粘连、断笔,直接使用此类图像进行OCR分析将会极大限制OCR性能。

  因此需要进行字符切割,即:将不同字符之间分割开。 

7. 字符识别:

  早期以模板匹配为主,后期以结合深度网络的特征提取为主。版面还原:将识别后的文字像原始文档图片那样排列,

  段落、位置、顺序不变地输出到Word文档、PDF文档等,这一过程称为版面还原。

8. 后期处理:根据特定的语言上下文的关系,对识别结果进行校正。

9. 输出:将识别出的字符以某一格式的文本输出。

三、OCR的使用现状

ocr的发展已经有了非常多的积累,一般人或者企业使用, 都是直接使用第三方的服务,目前提供第三方服务的大企业也非常多,百度,阿里云,腾讯等等,都提供了非常方便的api接口,可以进行调用,识别的速度、精确度和效果也都是非常不错的。唯一的缺点就是api的调用是需要收费的,对于调用频次不高的个人和企业,这个费用还是非常低的。

1,为什么企业要使用开源的而不是直接使用api服务?

目前因为公司的现状,使用开源的有几个目的

  1. 每天调用的频次比较高 , 以后可能越来越高, 所以基于费用的考虑是最主要的。
  2. 目前ocr的算法研究基本趋于成熟,并且目前对识别的精度要求不是太高,目前开源项目基本能够满足。
  3. 对于cv和深度学习进行一定程度的积累和了解,为后续工作做一些铺垫。
  4. 学习开源ocr的模型构建,方便后续对于模型的更新。

2,目前常用的几个OCR开源的项目

目前针对ocr的相关开源项目还是很多的,做了一些简单的调研和试用,在这里进行记录。对于调研不准确的希望大家指出。

第一名:PaddleOCR

PaddleOCR 是百度开源的中文识别的ocr开源软件,PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力开发者训练出更好的模型,并应用落地。

支持多种OCR相关前沿算法,在此基础上打造产业级特色模型PP-OCR和PP-Structure,并打通数据生产、模型训练、压缩、预测部署全流程。

  

开源地址: https://github.com/PaddlePaddle/PaddleOCR.git

官网地址: https://www.paddlepaddle.org.cn/

优势

  1. github上面star非常多,项目非常活跃
  2. 模型只针对中文进行训练
  3. 后面做背书的公司非常强(baidu)
  4. 相关的中文文档非常齐全
  5. 识别的精确度比较高
  6. 安装和教程详细
  7. 支持前沿算法和标注工具

劣势

  1. 目前使用的训练模型是基于百度公司自己的PaddlePaddle框架,对于小公司来说并不主流(对比于ts或者pytorch),所使用深度学习框架为后续其他深度学习无法做很好的铺垫
  2. 项目整体比较复杂,学习成本较高

所以根据自己实际情况,我最终选择了这个百度飞浆OCR开源项目学习。

第二名:Tesseract

Tesseract 一款由HP实验室开发由Google维护的开源OCR引擎,支持多语言,多平台,使用python开发。

开源地址: https://github.com/tesseract-ocr/tesseract.git

优势

  1. github上面star非常多,项目非常活跃
  2. 识别的语言和文字非常多
  3. 后面做背书的公司非常强(google)

劣势

  1. 不是专门针对中文场景
  2. 相关文档主要是英文,对于阅读和理解起来有一定困难
  3. 学习成本比较高
  4. 源码较多,并且部分源码是c++,学习起来难度比较大

所以根据自己实际情况放弃了这个项目的学习。

第三名:EasyOCR

EasyOCR是用Python编写基于Tesseract的OCR识别库,用于图像识别输出文本,目前支持80多种语言。

开源地址: https://github.com/JaidedAI/EasyOCR.git

优势

  1. github上面的star也是比较多,但是最近不是特别活跃
  2. 支持的语言也是非常多的,多达80多种
  3. 识别的精确度尚可

劣势

  1. 从官方的页面体验来说识别的速度较慢
  2. 识别的文字种类多,学习难度较高
  3. 相关的官方文档是基于英文的,学习难度较高,对于新手不太友好

所以根据自己实际情况放弃了这个项目的学习。

相关文章:

搭建自己的OCR服务,第一步:选择合适的开源OCR项目

一、OCR是什么? 光学字符识别(Optical Character Recognition, OCR)是指对文本资料的图像文件进行分析识别处理,获取文字及版面信息的过程。 亦即将图像中的文字进行识别,并以文本的形式返回。 二、OCR的基本流程 1…...

【C++】VScode配置C/C++语言环境(简洁易懂版)

目录 一、下载VScode(装好直接跳第五步)二、安装VScode三、VScode设置语言为中文四、VScode切换主题(个人爱好)五、下载C语言编译器(MinGW-W64 GCC)六、配置编译器环境变量七、配置VScode八、使用单独窗口…...

【hive】—原有分区表新增加列(alter table xxx add columns (xxx string) cascade;)

项目场景: 需求:需要在之前上线的分区报表中新增加一列。 实现方案: 1、创建分区测试表并插入测试数据 drop table test_1; create table test_1 (id string, score int, name string ) partitioned by (class string) row format delimit…...

verilog学习笔记7——PMOS和NMOS、TTL电路和CMOS电路

文章目录 前言一、PMOS和NMOS1、NMOS2、PMOS3、增强型和耗尽型4、两者面积大小 二、CMOS门电路1、非门2、与非门3、或非门4、线与逻辑5、CMOS传输门6、三态门 三、TTL电路四、TTL电路 VS CMOS电路五、数字电平六、使用CMOS电路实现逻辑函数1、上拉网络 PUN2、下拉网络 PDN3、实…...

Java知识点二

Java知识点二 1、Comparable内部比较器,Comparator外部比较器2、源码结构的区别:1)Comparable接口:2)Comparator接口: 2、Java反射 1、Comparable内部比较器,Comparator外部比较器 我们一般把Comparable叫…...

基于单片机压力传感器MPX4115检测-报警系统-proteus仿真-源程序

一、系统方案 本设计采用52单片机作为主控器,液晶1602显示,MPX4115检测压力,按键设置报警,LED报警。 二、硬件设计 原理图如下: 三、单片机软件设计 1、首先是系统初始化 /***************************************…...

Pytorch02 神经网路搭建步骤

文章目录 import numpy as np import torch from PIL.Image import Image from torch.autograd import Variable# 获取数据 def get_data():train_Xnp.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,7.042,10.791,5.313,7.997,5.654,9.27,3.1])train_Ynp.asarr…...

【源码】JavaWeb+Mysql招聘管理系统 课设

简介 用idea和eclipse都可以&#xff0c;数据库是mysql&#xff0c;这是一个Java和mysql做的web系统&#xff0c;用于期末课设作业 cout<<"如果需要的小伙伴可以http://www.codeying.top";可定做课设 线上招聘平台整合了各种就业指导资源&#xff0c;通过了…...

Java中级编程大师班<第一篇:初识数据结构与算法-数组(2)>

数组&#xff08;Array&#xff09; 数组是计算机编程中最基本的数据结构之一。它是一个有序的元素集合&#xff0c;每个元素都可以通过索引进行访问。本文将详细介绍数组的特性、用法和注意事项。 数组的基本特性 数组具有以下基本特性&#xff1a; 有序性&#xff1a; 数…...

杰哥教你面试之一百问系列:java集合

文章目录 1. 什么是Java集合&#xff1f;请简要介绍一下集合框架。2. Java集合框架主要分为哪几种类型&#xff1f;3. 什么是迭代器&#xff08;Iterator&#xff09;&#xff1f;它的作用是什么&#xff1f;4. ArrayList和LinkedList有什么区别&#xff1f;它们何时适用&#…...

【数据结构】树和二叉树概念

1.树概念及结构 树概念 树是一种非线性的数据结构&#xff0c;它是由n&#xff08;n>0&#xff09;个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树&#xff0c;也就是说它是根朝上&#xff0c;而叶朝下的。 有一个特殊的结点&#xff0c;…...

C盘清理教程

C盘清理教程 首先使用space Sniffer 扫一下c盘&#xff0c;然后看一下到底是哪个文件这么大 第二步&#xff0c;创建软链接。 首先将我们需要移动的文件的当前路径拷贝下来&#xff1a;C:\Users\Tom\Desktop\test-link\abc\ghi.txt 然后假设剪切到D盘下&#xff1a;D:\ghi.…...

【实战-05】 flinksql look up join

摘要 look up join 能做什么&#xff1f; 不饶关子直接说答案&#xff0c; look up join 就是 广播。 重要是事情说三遍&#xff0c;广播。flinksql中的look up join 就类似于flinks flink Datastream api中的广播的概念&#xff0c;但是又不完全相同&#xff0c;对于初次访问…...

C++数据结构--红黑树

目录 一、红黑树的概念二、红黑树的性质三、红黑树的节点的定义四、红黑树结构五、红黑树的插入操作参考代码 五、代码汇总 一、红黑树的概念 红黑树&#xff0c;是一种二叉搜索树&#xff0c;但在每个结点上增加一个存储位表示结点的颜色&#xff0c;可以是Red或Black。 通过…...

Linux perf使用思考

目录 一、参考资料&#xff08;建议阅读&#xff09;二、值得思考的几个问题1、perf使用不同的性能事件进行统计有什么区别呢&#xff1f;2、那使用不同的性能事件统计出来的数据&#xff1f;排序是如何决定的&#xff0c;其中的百分比数值在不同的性能事件进行统计时各自的意义…...

自定义路由断言工厂

我们来设定一个场景: 假设我们的应用仅仅让age在(min,max)之间的人来访问。 第1步&#xff1a;在配置文件中,添加一个Age的断言配置 spring: application:name: api-gateway cloud:nacos:discovery:server-addr: 127.0.0.1:8848gateway:discovery:locator:enabled: trueroute…...

Nacos安装及在项目中的使用

目录 概要一、安装 Nacos1、下载 Nacos2、解压3、启动 Nacos 服务器4、自定义Nacos启动脚本5、访问Nacos Web控制台 二、Nacos----服务注册与发现1、添加 Nacos 依赖2、配置 Nacos 服务器地址3、使用 Nacos 注册服务4、启动服务 三、Nacos----配置管理1、创建配置数据2、从 Nac…...

overleaf中latex语法总结

α和bata $\alpha$ $\beta$上标和下标同时使用 $A_{IJ}^{IJ}$\\ %上标^下标_多个使用{}行内公式 \noindent $abc$\\ %行内公式\documentclass{article} \usepackage[utf8]{inputenc} \usepackage[namelimits]{amsmath} %数学公式 \usepackage{amssymb} %数学公式…...

Grafana配置邮件告警

1、创建一个监控图 2、grafana邮件配置 vim /etc/grafana/grafana.ini [smtp] enabled true host smtp.163.com:465 user qinziteng05163.com password xxxxx # 授权码 from_address qinziteng05163.com from_name Grafanasystemctl restart grafana-serv…...

setup中的nextTick函数

await nextTick() 是 Vue 3 的一个异步函数&#xff0c;用于等待 DOM 更新完成后执行回调函数&#xff0c; 它在 setup 函数中非常有用&#xff0c;可以确保在对 DOM 进行操作之前&#xff0c;先等待 Vue 完成相关的 DOM 更新。 下面是一个示例&#xff0c;演示了 await nextT…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

Java多线程实现之Thread类深度解析

Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

Go 语言并发编程基础:无缓冲与有缓冲通道

在上一章节中&#xff0c;我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道&#xff0c;它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好&#xff0…...

Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)

引言 在人工智能飞速发展的今天&#xff0c;大语言模型&#xff08;Large Language Models, LLMs&#xff09;已成为技术领域的焦点。从智能写作到代码生成&#xff0c;LLM 的应用场景不断扩展&#xff0c;深刻改变了我们的工作和生活方式。然而&#xff0c;理解这些模型的内部…...

深入浅出Diffusion模型:从原理到实践的全方位教程

I. 引言&#xff1a;生成式AI的黎明 – Diffusion模型是什么&#xff1f; 近年来&#xff0c;生成式人工智能&#xff08;Generative AI&#xff09;领域取得了爆炸性的进展&#xff0c;模型能够根据简单的文本提示创作出逼真的图像、连贯的文本&#xff0c;乃至更多令人惊叹的…...

水泥厂自动化升级利器:Devicenet转Modbus rtu协议转换网关

在水泥厂的生产流程中&#xff0c;工业自动化网关起着至关重要的作用&#xff0c;尤其是JH-DVN-RTU疆鸿智能Devicenet转Modbus rtu协议转换网关&#xff0c;为水泥厂实现高效生产与精准控制提供了有力支持。 水泥厂设备众多&#xff0c;其中不少设备采用Devicenet协议。Devicen…...

上位机开发过程中的设计模式体会(1):工厂方法模式、单例模式和生成器模式

简介 在我的 QT/C 开发工作中&#xff0c;合理运用设计模式极大地提高了代码的可维护性和可扩展性。本文将分享我在实际项目中应用的三种创造型模式&#xff1a;工厂方法模式、单例模式和生成器模式。 1. 工厂模式 (Factory Pattern) 应用场景 在我的 QT 项目中曾经有一个需…...