当前位置: 首页 > news >正文

NIO简单介绍

一、什么是NIO

1、Java NIO全称java non-blocking IO, 是指JDK提供的新API。从JDK1.4开始,Java提供了一系列改进的输入/输出的新特性,被统称为NIO(即New IO),是同步非阻塞的

2、NIO有三大核心部分: Channel(通道), Buffer(缓冲区),Selector(选择器)

3、NIO是面向缓冲区,或者面向块编程的。数据读取到一个它稍后处理的缓冲区,需要时可在缓冲区中前后移动,这就增加了处理过程中的灵活性,使用它可以提供非阻塞式的高伸缩性网络。

二、NIO 与BIO 模型对比

BIO 是同步阻塞IO,服务器的模式是一个线程处理一个请求,当无响应时,会阻塞线程

NIO 同步非阻塞IO,会有一个Selector管理多个线程,当有事件发生后,进行处理、不会发生阻塞

三、NIO 与BIO的差异

1、BIO 以流的方式处理数据,而NIO以块的方式处理数据,块I/O 的效率比流I/O高很多

2、BIO 是阻塞的,NIO则是非阻塞的

3、BIO基 于字节流和字符流进行操作,而NIO 基于Channel(通道)和Buffer(缓冲区)进行操作,数据总是从通道读取到缓冲区中,或者从缓冲区写入到通道中。Selector(选择器)用于监听多个通道的事件(比如:连接请求,数据到达等),因此使用单个线程就可以监听多个客户端通道

相关文章:

NIO简单介绍

一、什么是NIO 1、Java NIO全称java non-blocking IO, 是指JDK提供的新API。从JDK1.4开始,Java提供了一系列改进的输入/输出的新特性,被统称为NIO(即New IO),是同步非阻塞的 2、NIO有三大核心部分: Channel(通道), Buf…...

linux进程杀不死

项目场景: 虚拟机 问题描述 linux进程杀不死 无反应 原因分析: 进程僵死zombie 解决方案: 进proc或者find命令找到进程所在地址 cat status查看进程杀死子进程...

5分钟带你搞懂RPA到底是什么?RPA能做什么?

一、RPA的定义 RPA,全称Robotic Process Automation,即机器人流程自动化,是一种软件解决方案,能够模拟人类在计算机上执行的操作,以实现重复性、繁琐任务的自动化。它与传统的计算机自动化有所不同,因为它…...

毫米波雷达 TI IWR1443 在 ROS 中进行 octomap 建图

个人实验记录 /mmwave_ti_ros/ros_driver/src/ti_mmwave_rospkg/launch/1443_multi_3d_0.launch <launch><!-- Input arguments --><arg name"device" value"1443" doc"TI mmWave sensor device type [1443, 1642]"/><arg…...

113双周赛

题目列表 2855. 使数组成为递增数组的最少右移次数 2856. 删除数对后的最小数组长度 2857. 统计距离为 k 的点对 2858. 可以到达每一个节点的最少边反转次数 一、使数组成为递增数组的最少右移次数 这题可以直接暴力求解&#xff0c;枚举出每种右移后的数组&#xff0c;将…...

React 全栈体系(九)

第五章 React 路由 一、相关理解 1. SPA 的理解 单页 Web 应用&#xff08;single page web application&#xff0c;SPA&#xff09;。整个应用只有一个完整的页面。点击页面中的链接不会刷新页面&#xff0c;只会做页面的局部更新。数据都需要通过 ajax 请求获取, 并在前端…...

阈值化分割,对灰度级图像进行二值化处理(数字图像处理大题复习 P8)

文章目录 画出表格求出灰度直方图 & 山谷画出结果图 画出表格 有几个0就写几&#xff0c;有几个1就写几&#xff0c;如图 求出灰度直方图 & 山谷 跟前面求灰度直方图的方法一样&#xff0c;找出谷底&#xff0c;发现结果为 4 画出结果图 最终的结果就是&#xf…...

vue3中withDefaults是什么

问: const props withDefaults(defineProps<{// 数据列表lotteryList: { pic: string; name?: string }[];// 中奖idwinId: number;// 抽奖初始转动速度initSpeed: number;// 抽奖最快转动速度fastSpeed: number;// 抽奖最慢转动速度slowSpeed: number;// 基本圈数baseCi…...

Android进阶之路 - 盈利、亏损金额格式化

在金融类型的app中&#xff0c;关于金额、数字都相对敏感和常见一些&#xff0c;在此仅记录我在金融行业期间学到的皮毛&#xff0c;如后续遇到新的场景也会加入该篇 该篇大多采用 Kotlin 扩展函数的方式进行记录&#xff0c;尽可能熟悉 Kotlin 基础知识 兄弟 Blog StringUti…...

工业蒸汽量预测(速通一)

工业蒸汽量预测&#xff08;一&#xff09; 赛题理解1、评估指标2、赛题模型3、解题思路 理论知识1、变量识别2、变量分析3、缺失值处理4、异常值处理5、变量转换6、新变量生成 数据探索1、导包2、读取数据3、查看数据4、可视化数据分布4.1箱型图4.2获取异常数据并画图4.3直方图…...

机器学习的主要内容

分类任务 回归任务 有一些算法只能解决回归问题有一些算法只能解决分类问题有一些算法的思路既能解决回归问题&#xff0c;又能解决分类问题 一些情况下&#xff0c; 回归任务可以转化为分类任务&#xff0c; 比如我们预测学生的成绩&#xff0c;然后根据学生的成绩划分为A类、…...

华为OD机试真题-分积木-2023年OD统一考试(B卷)

题目描述: Solo和koko是两兄弟,妈妈给了他们一大堆积木,每块积木上都有自己的重量。现在他们想要将这些积木分成两堆。哥哥Solo负责分配,弟弟koko要求两个人获得的积木总重量“相等”(根据Koko的逻辑),个数可以不同,不然就会哭,但koko只会先将两个数转成二进制再进行加…...

SpringBoot自动装配原理及分析

一、什么是自动装配 在使用SpringBoot的时候&#xff0c;会自动将Bean装配到IoC容器中。例如我们在使用Redis数据库的时候&#xff0c;会引入依赖spring-boot-starter-data-redis。在引入这个依赖后&#xff0c;服务初始化的时候&#xff0c;会将操作Redis需要的组件注入到IoC…...

Android开发笔记 :理解Fragment

Android开发笔记&#xff1a;理解Fragment 导言 本篇文章产生的原因很简单&#xff0c;就是我在了解Android Jetpack中的Lifecycle框架时发现Lifecycle具体时间和状态的更新都是由一个名为ReportFragment的Fragment来跟踪的&#xff0c;为了更好的了解Fragment是如何追踪Activ…...

std::chrono获取当前秒级/毫秒级/微秒级/纳秒级时间戳

当前时间戳获取方法 先使用std::chrono获取当前系统时间&#xff0c;然后将当前系统时间转换为纪元时间std::time_t类型&#xff0c;之后使用std::localtime对std::time_t类型转换为本地时间结构体std::tm类型&#xff0c;最后使用strftime对时间进行格式化输出。 其中std::t…...

sh文件介绍及linux下执行

Shell脚本是一种用于自动化任务和系统管理的脚本语言。它允许用户通过命令行界面执行一系列命令&#xff0c;从而简化了重复性任务的处理过程。 以下是关于Shell脚本的一些基本概念&#xff1a; 1. Shell脚本通常以“.sh”扩展名保存&#xff0c;例如“script.sh”。 2. Shell…...

js-cookie使用 js深度克隆(判断引用类型是数组还是对象的方法)

cookie和深度拷贝的使用 1、js-cookie使用2、js深度克隆 1、js-cookie使用 前端的本地存储分为 localstorage、sesstionstorage、cookie 但是咱们有时候需要做7天免登录的需求时&#xff0c;选择 cookie 作为前端的本地存储是在合适不过的了 直接操作 cookie 可以&#xff0c; …...

[Pytorch]语义分割任务分类的实现

文章目录 [Pytorch]语义分割任务分类的实现 [Pytorch]语义分割任务分类的实现 假如我们定义了一个网络用于语义分割任务&#xff0c;这个网络简称为model() 语义分割任务要做的是&#xff1a; 对于一个图片输入input&#xff0c;大小为&#xff08;B&#xff0c;C&#xff0c…...

测试网页调用本地可执行程序(续:带参数调用)

前篇文章介绍了网页调用本地可执行程序的方式&#xff0c;通过在注册表中注册命令&#xff0c;然后在网页中调用命令启动本地程序。如果需要传递参数&#xff0c;则需要在注册表命令中的command项中设置如下形式的值。 "XXXXXX\XXXXXXX.exe" "%1"&emsp…...

Carla自动驾驶模拟器安装和使用

Carla自动驾驶模拟器安装和使用 1 安装 ubuntu20.04安装carla0.9.11版本 步骤1&#xff1a;打开下面链接&#xff0c;点击第一个[Ubuntu] CARLA_0.9.11.tar.gz carla-0.9.11源码下载 步骤2&#xff1a;下载完解压到/opt目录下 我的话是先在下载目录上提取解压&#xff0c;然…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误

HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误&#xff0c;它们的含义、原因和解决方法都有显著区别。以下是详细对比&#xff1a; 1. HTTP 406 (Not Acceptable) 含义&#xff1a; 客户端请求的内容类型与服务器支持的内容类型不匹…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年&#xff0c;截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始&#xff0c;将英文题库免费公布出来&#xff0c;并进行解析&#xff0c;帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

DingDing机器人群消息推送

文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人&#xff0c;点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置&#xff0c;详见说明文档 成功后&#xff0c;记录Webhook 2 API文档说明 点击设置说明 查看自…...

MyBatis中关于缓存的理解

MyBatis缓存 MyBatis系统当中默认定义两级缓存&#xff1a;一级缓存、二级缓存 默认情况下&#xff0c;只有一级缓存开启&#xff08;sqlSession级别的缓存&#xff09;二级缓存需要手动开启配置&#xff0c;需要局域namespace级别的缓存 一级缓存&#xff08;本地缓存&#…...

QT开发技术【ffmpeg + QAudioOutput】音乐播放器

一、 介绍 使用ffmpeg 4.2.2 在数字化浪潮席卷全球的当下&#xff0c;音视频内容犹如璀璨繁星&#xff0c;点亮了人们的生活与工作。从短视频平台上令人捧腹的搞笑视频&#xff0c;到在线课堂中知识渊博的专家授课&#xff0c;再到影视平台上扣人心弦的高清大片&#xff0c;音…...

Monorepo架构: Nx Cloud 扩展能力与缓存加速

借助 Nx Cloud 实现项目协同与加速构建 1 &#xff09; 缓存工作原理分析 在了解了本地缓存和远程缓存之后&#xff0c;我们来探究缓存是如何工作的。以计算文件的哈希串为例&#xff0c;若后续运行任务时文件哈希串未变&#xff0c;系统会直接使用对应的输出和制品文件。 2 …...

[拓扑优化] 1.概述

常见的拓扑优化方法有&#xff1a;均匀化法、变密度法、渐进结构优化法、水平集法、移动可变形组件法等。 常见的数值计算方法有&#xff1a;有限元法、有限差分法、边界元法、离散元法、无网格法、扩展有限元法、等几何分析等。 将上述数值计算方法与拓扑优化方法结合&#…...