Redisson—分布式对象
每个Redisson对象实例都会有一个与之对应的Redis数据实例,可以通过调用getName方法来取得Redis数据实例的名称(key)。
RMap map = redisson.getMap("mymap");
map.getName(); // = mymap
所有与Redis key相关的操作都归纳在RKeys这个接口里:
RKeys keys = redisson.getKeys();Iterable<String> allKeys = keys.getKeys();
Iterable<String> foundedKeys = keys.getKeysByPattern('key*');
long numOfDeletedKeys = keys.delete("obj1", "obj2", "obj3");
long deletedKeysAmount = keys.deleteByPattern("test?");
String randomKey = keys.randomKey();
long keysAmount = keys.count();
6.1. 通用对象桶(Object Bucket)
Redisson的分布式RBucketJava对象是一种通用对象桶可以用来存放任类型的对象。 除了同步接口外,还提供了异步(Async)、反射式(Reactive)和RxJava2标准的接口。
RBucket<AnyObject> bucket = redisson.getBucket("anyObject");
bucket.set(new AnyObject(1));
AnyObject obj = bucket.get();bucket.trySet(new AnyObject(3));
bucket.compareAndSet(new AnyObject(4), new AnyObject(5));
bucket.getAndSet(new AnyObject(6));
还可以通过RBuckets接口实现批量操作多个RBucket对象:
RBuckets buckets = redisson.getBuckets();
List<RBucket<V>> foundBuckets = buckets.find("myBucket*");
Map<String, V> loadedBuckets = buckets.get("myBucket1", "myBucket2", "myBucket3");Map<String, Object> map = new HashMap<>();
map.put("myBucket1", new MyObject());
map.put("myBucket2", new MyObject());// 利用Redis的事务特性,同时保存所有的通用对象桶,如果任意一个通用对象桶已经存在则放弃保存其他所有数据。
buckets.trySet(map);
// 同时保存全部通用对象桶。
buckets.set(map);
6.2. 二进制流(Binary Stream)
Redisson的分布式RBinaryStream Java对象同时提供了InputStream接口和OutputStream接口的实现。流的最大容量受Redis主节点的内存大小限制。
RBinaryStream stream = redisson.getBinaryStream("anyStream");
byte[] content = ...
stream.set(content);InputStream is = stream.getInputStream();
byte[] readBuffer = new byte[512];
is.read(readBuffer);OutputStream os = stream.getOuputStream();
byte[] contentToWrite = ...
os.write(contentToWrite);
6.3. 地理空间对象桶(Geospatial Bucket)
Redisson的分布式RGeo Java对象是一种专门用来储存与地理位置有关的对象桶。除了同步接口外,还提供了异步(Async)、反射式(Reactive)和RxJava2标准的接口。
RGeo<String> geo = redisson.getGeo("test");
geo.add(new GeoEntry(13.361389, 38.115556, "Palermo"),new GeoEntry(15.087269, 37.502669, "Catania"));
geo.addAsync(37.618423, 55.751244, "Moscow");Double distance = geo.dist("Palermo", "Catania", GeoUnit.METERS);
geo.hashAsync("Palermo", "Catania");
Map<String, GeoPosition> positions = geo.pos("test2", "Palermo", "test3", "Catania", "test1");
List<String> cities = geo.radius(15, 37, 200, GeoUnit.KILOMETERS);
Map<String, GeoPosition> citiesWithPositions = geo.radiusWithPosition(15, 37, 200, GeoUnit.KILOMETERS);
6.4. BitSet
Redisson的分布式RBitSetJava对象采用了与java.util.BiteSet类似结构的设计风格。可以理解为它是一个分布式的可伸缩式位向量。需要注意的是RBitSet的大小受Redis限制,最大长度为4 294 967 295。除了同步接口外,还提供了异步(Async)、反射式(Reactive)和RxJava2标准的接口。
RBitSet set = redisson.getBitSet("simpleBitset");
set.set(0, true);
set.set(1812, false);
set.clear(0);
set.addAsync("e");
set.xor("anotherBitset");
6.4.1. BitSet数据分片(Sharding)(分布式RoaringBitMap)
基于Redis的Redisson集群分布式BitSet通过RClusteredBitSet接口,为集群状态下的Redis环境提供了BitSet数据分片的功能。通过优化后更加有效的分布式RoaringBitMap算法,突破了原有的BitSet大小限制,达到了集群物理内存容量大小。在这里可以获取更多的内部信息。
RClusteredBitSet set = redisson.getClusteredBitSet("simpleBitset");
set.set(0, true);
set.set(1812, false);
set.clear(0);
set.addAsync("e");
set.xor("anotherBitset");
该功能仅限于Redisson PRO版本。
6.5. 原子整长形(AtomicLong)
Redisson的分布式整长形RAtomicLong对象和Java中的java.util.concurrent.atomic.AtomicLong对象类似。除了同步接口外,还提供了异步(Async)、反射式(Reactive)和RxJava2标准的接口。
RAtomicLong atomicLong = redisson.getAtomicLong("myAtomicLong");
atomicLong.set(3);
atomicLong.incrementAndGet();
atomicLong.get();
6.6. 原子双精度浮点(AtomicDouble)
Redisson还提供了分布式原子双精度浮点RAtomicDouble,弥补了Java自身的不足。除了同步接口外,还提供了异步(Async)、反射式(Reactive)和RxJava2标准的接口。
RAtomicDouble atomicDouble = redisson.getAtomicDouble("myAtomicDouble");
atomicDouble.set(2.81);
atomicDouble.addAndGet(4.11);
atomicDouble.get();
6.7. 话题(订阅分发)
Redisson的分布式话题[RTopic](http://static.javadoc.io/org.redisson/redisson/3.10.0/org/redisson/api/RTopic.html对象实现了发布、订阅的机制。除了同步接口外,还提供了异步([Async](http://static.javadoc.io/org.redisson/redisson/3.10.0/org/redisson/api/RTopicAsync.html))、反射式([Reactive](http://static.javadoc.io/org.redisson/redisson/3.10.0/org/redisson/api/RTopicReactive.html))和[RxJava2](http://static.javadoc.io/org.redisson/redisson/3.10.0/org/redisson/api/RTopicRx.html)标准的接口。
RTopic topic = redisson.getTopic("anyTopic");
topic.addListener(SomeObject.class, new MessageListener<SomeObject>() {@Overridepublic void onMessage(String channel, SomeObject message) {//...}
});// 在其他线程或JVM节点
RTopic topic = redisson.getTopic("anyTopic");
long clientsReceivedMessage = topic.publish(new SomeObject());
在Redis节点故障转移(主从切换)或断线重连以后,所有的话题监听器将自动完成话题的重新订阅。
6.7.1. 模糊话题
Redisson的模糊话题RPatternTopic对象可以通过正式表达式来订阅多个话题。除了同步接口外,还提供了异步(Async)、反射式(Reactive)和RxJava2标准的接口。
// 订阅所有满足`topic1.*`表达式的话题
RPatternTopic topic1 = redisson.getPatternTopic("topic1.*");
int listenerId = topic1.addListener(Message.class, new PatternMessageListener<Message>() {@Overridepublic void onMessage(String pattern, String channel, Message msg) {Assert.fail();}
});
在Redis节点故障转移(主从切换)或断线重连以后,所有的模糊话题监听器将自动完成话题的重新订阅。
6.8. 布隆过滤器(Bloom Filter)
Redisson利用Redis实现了Java分布式布隆过滤器(Bloom Filter)。所含最大比特数量为2^32。
RBloomFilter<SomeObject> bloomFilter = redisson.getBloomFilter("sample");
// 初始化布隆过滤器,预计统计元素数量为55000000,期望误差率为0.03
bloomFilter.tryInit(55000000L, 0.03);
bloomFilter.add(new SomeObject("field1Value", "field2Value"));
bloomFilter.add(new SomeObject("field5Value", "field8Value"));
bloomFilter.contains(new SomeObject("field1Value", "field8Value"));
6.8.1. 布隆过滤器数据分片(Sharding)
基于Redis的Redisson集群分布式布隆过滤器通过RClusteredBloomFilter接口,为集群状态下的Redis环境提供了布隆过滤器数据分片的功能。 通过优化后更加有效的算法,通过压缩未使用的比特位来释放集群内存空间。每个对象的状态都将被分布在整个集群中。所含最大比特数量为2^64。在这里可以获取更多的内部信息。
RClusteredBloomFilter<SomeObject> bloomFilter = redisson.getClusteredBloomFilter("sample");
// 采用以下参数创建布隆过滤器
// expectedInsertions = 255000000
// falseProbability = 0.03
bloomFilter.tryInit(255000000L, 0.03);
bloomFilter.add(new SomeObject("field1Value", "field2Value"));
bloomFilter.add(new SomeObject("field5Value", "field8Value"));
bloomFilter.contains(new SomeObject("field1Value", "field8Value"));
该功能仅限于Redisson PRO版本。
6.9. 基数估计算法(HyperLogLog)
Redisson利用Redis实现了Java分布式基数估计算法(HyperLogLog)对象。该对象可以在有限的空间内通过概率算法统计大量的数据。除了同步接口外,还提供了异步(Async)、反射式(Reactive)和RxJava2标准的接口。
RHyperLogLog<Integer> log = redisson.getHyperLogLog("log");
log.add(1);
log.add(2);
log.add(3);log.count();
6.10. 整长型累加器(LongAdder)
基于Redis的Redisson分布式整长型累加器(LongAdder)采用了与java.util.concurrent.atomic.LongAdder类似的接口。通过利用客户端内置的LongAdder对象,为分布式环境下递增和递减操作提供了很高得性能。据统计其性能最高比分布式AtomicLong对象快 12000 倍。完美适用于分布式统计计量场景。
RLongAdder atomicLong = redisson.getLongAdder("myLongAdder");
atomicLong.add(12);
atomicLong.increment();
atomicLong.decrement();
atomicLong.sum();
当不再使用整长型累加器对象的时候应该自行手动销毁,如果Redisson对象被关闭(shutdown)了,则不用手动销毁。
RLongAdder atomicLong = ...
atomicLong.destroy();
6.11. 双精度浮点累加器(DoubleAdder)
基于Redis的Redisson分布式双精度浮点累加器(DoubleAdder)采用了与java.util.concurrent.atomic.DoubleAdder类似的接口。通过利用客户端内置的DoubleAdder对象,为分布式环境下递增和递减操作提供了很高得性能。据统计其性能最高比分布式AtomicDouble对象快 12000 倍。完美适用于分布式统计计量场景。
RLongDouble atomicDouble = redisson.getLongDouble("myLongDouble");
atomicDouble.add(12);
atomicDouble.increment();
atomicDouble.decrement();
atomicDouble.sum();
当不再使用双精度浮点累加器对象的时候应该自行手动销毁,如果Redisson对象被关闭(shutdown)了,则不用手动销毁。
RLongDouble atomicDouble = ..._b6d2063_
atomicDouble.destroy();
6.12. 限流器(RateLimiter)
基于Redis的分布式限流器(RateLimiter)可以用来在分布式环境下现在请求方的调用频率。既适用于不同Redisson实例下的多线程限流,也适用于相同Redisson实例下的多线程限流。该算法不保证公平性。除了同步接口外,还提供了异步(Async)、反射式(Reactive)和RxJava2标准的接口。
RRateLimiter rateLimiter = redisson.getRateLimiter("myRateLimiter");
// 初始化
// 最大流速 = 每1秒钟产生10个令牌
rateLimiter.trySetRate(RateType.OVERALL, 10, 1, RateIntervalUnit.SECONDS);CountDownLatch latch = new CountDownLatch(2);
limiter.acquire(3);
// ...Thread t = new Thread(() -> {limiter.acquire(2);// ...
});
相关文章:
Redisson—分布式对象
每个Redisson对象实例都会有一个与之对应的Redis数据实例,可以通过调用getName方法来取得Redis数据实例的名称(key)。 RMap map redisson.getMap("mymap"); map.getName(); // mymap 所有与Redis key相关的操作都归纳在RKeys这…...
alsa pcm接口之在unix环境的传输方法
在unix环境,数据片段响应被接受通过standard I/O call或事件等待路径(poll或select功能),为完成列表,异步通知响应该被列举出来.ALSA实现那些方法被描述在ALSA transfers部分. 标准I/O传输(Standadrd I/O transfers) 这个标准I/O传输常常使用read和write C语言函数集,对于那些函…...
小谈设计模式(20)—组合模式
小谈设计模式(20)—组合模式 专栏介绍专栏地址专栏介绍 组合模式对象类型叶节点组合节点 核心思想应用场景123 结构图结构图分析 Java语言实现首先,我们需要定义一个抽象的组件类 Component,它包含了组合节点和叶节点的公共操作&a…...
sheng的学习笔记-【中文】【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第三周测验
课程1_第3周_测验题 目录:目录 第一题 1.以下哪一项是正确的? A. 【 】 a [ 2 ] ( 12 ) a^{[2](12)} a[2](12)是第12层,第2个训练数据的激活向量。 B. 【 】X是一个矩阵,其中每个列都是一个训练示例。 C. 【 】 a 4 […...
一文详解动态链表和静态链表的区别
1、引言 本文主要是对动态链表和静态链表的区别进行原理上的讲解分析,先通过对顺序表和动态链表概念和特点的原理性介绍,进而引申出静态链表的作用,以及其概念。通过这些原理性的概述,最后总结归纳出动态链表和静态链表的区别。本…...
[C国演义] 第十三章
第十三章 三数之和四数之和 三数之和 力扣链接 根据题目要求: 返回的数对应的下标各不相同三个数之和等于0不可包含重复的三元组 – – 即顺序是不做要求的 如: [-1 0 1] 和 [0, 1, -1] 是同一个三元组输出答案顺序不做要求 暴力解法: 排序 3个for循环 去重 — — N^3, …...
<二>Qt斗地主游戏开发:过场动画的实现
1. 过场动画效果 2. 思路分析 过场动画较为简单,只有一个进度条在进行滚动,因此实现起来不需要动画相关处理,仅需要图片和定时器设定,让进度条动起来即可。我们可以创建一个对话框,设定背景图片以及对话框透明无边框&a…...
链式法则(Chain Rule)
定义 链式法则(Chain Rule)是概率论和统计学中的一个基本原理,用于计算联合概率分布或条件概率分布的乘积。它可以用于分解一个复杂的概率分布为多个较简单的条件概率分布的乘积,从而简化概率分析问题。 链式法则有两种常见的形…...
AUTOSAR COM模块框架梳理
框架: COM的功能主要就是两个: 把IPDU内的signal提取出来提供给SWC使用,把SWC发送的signal拷贝到IPDU buffer内 所以,COM的关键字是 signal, signal group, IPDU, IPDU group Signal group 是为了保证 Complex Data Types 的数…...
详细介绍区块链之挖矿
对不起,大家,这篇文章对作者来说实在是太有意义和含金量了,作者想把它设置为关注博主才能见全文,请大家理解!如果觉得还是看不懂,抱歉耽误大家的时间,就请取消关注!!&…...
华为OD机试真题-路灯照明问题(Java/C++/Go/Python)
【华为OD机试真题】路灯照明问题(Java/C++/Go/Python) 题目描述 在一条笔直的公路上安装了N个路灯,从位置0开始安装,路灯之间间距固定为100米。 每个路灯都有自己的照明半径,请计算第一个路灯和最后一个路灯之间,无法照明的区间的长度和。 输入描述 第一行为一个数N…...
嵌入式技术面试基本规则
潜规则1:面试的本质不是考试,而是告诉面试官你会做什么 经验不够的小伙伴特别容易犯的一个错误,不清楚面试官到底想问什么,其实整个面试中面试官并没有想难倒你的意思,只是想通过提问的方式来知道你会什么。 比如stm…...
osg实现自定义插件读取自定义格式的模型文件到场景
目录 1. 前言 2. 预备知识 3. 工具、原料 4. 代码实现 1. 前言 osg提供了很多插件来读取模型文件到场景中,这些插件支持大约70种格式类型的文件,但现实中的文件是各式各样,osg不可能囊括所有类型文件,当osg不支持某种类型格式…...
redis进阶
redis.conf 启动的时候就通过配置文件来启动的! # 这个不是配置的,就是在这儿说明一下 # 当配置中需要配置内存大小时,可以使用 1k, 5GB, 4M 等类似的格式,其转换方式如下(不区分大小写) # # 1k > 1000 bytes # 1kb > 102…...
(一)正点原子STM32MP135移植——准备
一、简述 使用板卡:正点原子的ATK-DLMP135 V1.2 从i.mx6ull学习完过来,想继续学习一下移植uboot和内核的,但是原子官方没有MP135的移植教程,STM32MP157的移植教程用的又是老版本的代码,ST官方更新后的代码不兼容老版本…...
Kotlin的关键字 lateinit 和 lazy
序、完善一下曾经的草稿。 Kotlin通常要求我们在定义属性后立即对起进行初始化,当我们不知道理想的初始值时,这样做似乎很奇怪,尤其是在生命周期驱动android属性的情况下。 lateinit 简介 lateinit,Kotlin提供的一个可以延迟初…...
阿里云服务器ECS详细介绍_云主机_服务器托管_弹性计算
阿里云服务器ECS英文全程Elastic Compute Service,云服务器ECS是一种安全可靠、弹性可伸缩的云计算服务,阿里云提供多种云服务器ECS实例规格,如经济型e实例、通用算力型u1、ECS计算型c7、通用型g7、GPU实例等,阿里云服务器网分享阿…...
12、建立健全人员培训体系
9、大小屏分离与精细化审核 10、质量审核的设立与合并 11、视频分类建议 内容仓为公司其他部门输送了许多人才,既包括有潜力的主管,也有表现突出或者具备某些特殊能力的员工,从内容仓走出的同事,有些已经成为公司重要业务某个方…...
代码随想录算法训练营第五十九天 | 647. 回文子串 516.最长回文子序列
1. 回文子串 647. 回文子串 - 力扣(LeetCode) 一个子串左右两个元素相等,并且中间对称,才是回文子串 即 ij 时,[i1: j-1]对称 dp[i][j]: [i:j] 是否是回文字串 当 子串长度大于2 由 dp[i1][j-1] 推出…...
React Redux
redux是什么 Redux是一个模式和库,用于管理和更新应用程序状态,使用称为“action”的事件。它是需要在整个应用程序中使用的状态的集中存储,规则确保状态只能以可预测的方式更新。 Redux主要有三个功能: 获取当前状态更新状态监…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
铭豹扩展坞 USB转网口 突然无法识别解决方法
当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
MySQL 8.0 OCP 英文题库解析(十三)
Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...
让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...
Go 并发编程基础:通道(Channel)的使用
在 Go 中,Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式,用于在多个 Goroutine 之间传递数据,从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...
Selenium常用函数介绍
目录 一,元素定位 1.1 cssSeector 1.2 xpath 二,操作测试对象 三,窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四,弹窗 五,等待 六,导航 七,文件上传 …...
Unity VR/MR开发-VR开发与传统3D开发的差异
视频讲解链接:【XR马斯维】VR/MR开发与传统3D开发的差异【UnityVR/MR开发教程--入门】_哔哩哔哩_bilibili...
Pydantic + Function Calling的结合
1、Pydantic Pydantic 是一个 Python 库,用于数据验证和设置管理,通过 Python 类型注解强制执行数据类型。它广泛用于 API 开发(如 FastAPI)、配置管理和数据解析,核心功能包括: 数据验证:通过…...
