当前位置: 首页 > news >正文

HTTPS 加密工作过程

引言

HTTP 协议内容都是按照文本的方式明文传输的,这就导致在传输过程中出现一些被篡改的情况。例如臭名昭著的运营商劫持。显然, 明文传输是比较危险的事情,为此引入 HTTPS ,HTTPS 就是在 HTTP 的基础上进行了加密, 进一步的来保证用户的信息安全。

一、加密解密的基本概念

回过头来说,那么 HTTPS 是如何实现对数据加密的呢?为了解答这个问题,首先要引入一组概念:

加密:就是把 明文 (要传输的信息)进行一系列变换,生成 密文

解密:就是把 密文 再进行一系列变换,还原成 明文

密钥:在这个加密和解密的过程中,往往需要一个或者多个中间的数据,辅助进行这个过程,这样的数据称为 密 钥

加密的方式:加密是一个复杂的过程,方式有很多,目前我们讨论宏观过程将其分成两大类:对称加密 和 非对称加密。

二、HTTPS 的工作过程

1、对称加密

概念: 对称加密其实就是通过同一个密钥 key,把明文加密成密文,并且也能把密文解密成明文。

这个过程就类似于按位异或操作:

明文=1234,对称密钥 key=6666
加密密文=明文^key=1234^6666=7896
解密明文=密文^key=7896^6666=1234

对称密钥工作过程:

通过对称加密,即使数据被黑客截获,但是由于没有密钥,无法对数据进行解密,因此可以保证数据传输的安全。

但是上述情况并不现实,对于服务器来说,通常要给很多个客户端提供服务,如果密钥全部都相同,那么当黑客作为客户端,也就可以获取到密钥 key,这对于网络数据传输来说显然是行不通的;

因此为了杜绝以上情况,需要保证每个客户端与服务器之间的密钥是唯一的,此处就需要让客户端在于服务器建立连接的时候,生成一个自己的对称密钥 key,然后通过网络发送给服务器,此后每个客户端与服务器数据传输过程就通过各自的对称对称密钥实现加密传输。但是这样真的可行吗?我们先看一张示例图:

可以看到,由于密钥 key 是明文传输的,一旦传输过程中被黑客截获,那么后面的加密传输就是形同虚设了。因此 密钥的传输也必须加密传输 为此引入了非对称加密。

2、引入非对称加密

概念:

  1. 非对称加密要用到两个密钥,一个叫做 “公钥 pub”,一个叫做 “私钥 pri”,并且公钥和私钥是配对的。
  2. 此处约定自己留着的是私钥,公布给别人的是公钥。
  3. 可以通过私钥 pri 对明文加密,使用配对的公钥 pub 对密文解密;亦可以使用公钥 pub 对明文加密,使用配对的私钥 pri 对密文解密。

非对称密钥工作过程:

  1. 为了保证对称密钥能够安全到达服务器,引入非对称加密,保护对称密钥。非对称加密在完成对称密钥的传输后就结束了。
  2. 对称密钥相较于非对称密钥,效率要高很多。对于客户端和服务器的业务数据传输,通常使用对称加密的方式。

中间人攻击

那么引入了非对称加密,数据传输就彻底安全了吗?其实在这个过程中黑客还有另一种手段称作“中间人攻击”,黑客可以通过伪造公钥 pub 的方式获取对称密钥 key,具体过程如下图:

很显然,通过上述“中间人攻击”的方式,黑客可以“神不知鬼不觉”地获取到使用非对称加密传输的对称密钥 key,从而获取到接下来的业务传输数据。为了防止这种“中间人攻击”的情况发生,下面引入证书。

3、引入证书

中间人攻击破解的关键就是能够让客户端信任公钥。服务器在搭建的时候就需要向权威机构提交材料,申请证书,证书中就包含了服务器自己的公钥 pub 和一些其他属性,其中一个关键的属性就是 加密的签名,这个签名是由证书的颁发机构根据证书中的所有属性按照一定的算法计算得到的校验和,并且使用颁发机构的一对非对称密钥 pub (客户端操作系统内置)、pri(机构自己持有) 中的私钥 pri 进行加密得到的。

引入证书之后,客户端就不再直接从服务器请求公钥了,而是直接请求服务器的证书:


可见证书起到的主要作用就是 校验

  1. 客户端拿到证书后,首先使用系统中内置权威机构的公钥,针对证书中的 加密签名进行解密,得到初始签名 sum1
  2. 客户端使用相同签名计算算法,基于证书中的属性重新计算,得到 sum2
  3. 比较两个签名是否相同,如果相同,说明证书中的数据都是未篡改过的原始数据;如果不同,说明证书中的数据被篡改过,客户端浏览器弹窗报错。

相关文章:

HTTPS 加密工作过程

引言 HTTP 协议内容都是按照文本的方式明文传输的,这就导致在传输过程中出现一些被篡改的情况。例如臭名昭著的运营商劫持。显然, 明文传输是比较危险的事情,为此引入 HTTPS ,HTTPS 就是在 HTTP 的基础上进行了加密, 进一步的来保…...

校招秋招,性格和职业有关系吗?

企业在招聘应届毕业生时不再局限于普通的面试或者笔试,在互联网时代,为了能够更好的匹配需要的优质人才,企业会通过各种测试来提高招聘的准确率以及成功率。也许以前很多人都听说过性格和职业是有一定关系的,但是如何确定自己的性…...

网络和系统操作命令

目录 ping:用于检测网络是否通畅,以及网络时延情况。ipconfig:查看计算机的IP参数配置信息,如IP地址、默认网关、子网掩码等信息。netstat:显示协议统计信息和当前TCP/IP网络连接。tasklist:显示当前运行的…...

刷穿力扣(1~30)

更好的阅读体验 \huge{\color{red}{更好的阅读体验}} 更好的阅读体验 1. 两数之和 哈希表遍历数组,同时用 HashMap 维护已出现过的数及其下标若当前的数 nums[i] 满足 target - nums[i] 曾经出现过,则直接返回否则将其加入到哈希表中。 class Solution …...

栈和队列的基本操作

(一)实验类型:设计性 (二)实验目的: 1.掌握栈和队列的抽象数据类型。 2.掌握实现栈和队列的各种操作的算法。 3.理解栈与递归的关系。 4. 掌握队列的链式存贮结构及基…...

变压器绕组断股往往导致直流电阻不平衡率超标

变压器绕组断股往往导致直流电阻不平衡率超标, 例如, 某电厂 SFPSL—12000/220 型主变压器, 色谱分析结果发现总烃含量急剧增长, 测直流电阻, 其结果是高、 低压侧与制造厂及历年的数值相比较无异常, 但中压…...

stack和queque

1.stack 1.1定义 T 是容器内的数据类型; Container是数据类型的容器适配器 vector和list和stack的区别 1.2 stack的功能 注意这里没有迭代器;原因stack是先进后出的规律;这就规定该容器不可以随机访问; 2. queue...

信息学 学习/复习 抽签器(附源码)

问你一个问题&#xff0c;你考试前怎么复习呀&#xff1f; 效果图 以下是源代码&#xff0c;可自行修改 [C] #include<bits/stdc.h> #include<windows.h> using namespace std; vector<string>item; int main(void) {item.push_back("Manacher"…...

基于LADRC自抗扰控制的VSG三相逆变器预同步并网控制策略(Simulink仿真实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

[0xGame 2023] week1

整理一下&#xff0c;昨天该第二周了。今天应该9点结束提交&#xff0c;等我写完就到了。 PWN 找不到且不对劲的flag 第1题是个nc测试&#xff0c;但也不完全是&#xff0c;因为flag在隐含目录里 高端的syscall 程序使用了危险函数&#xff0c;并且没有canary阻止&#xff0…...

Matlab矩阵——矩阵行列互换

问题&#xff1a;如何将 1*n 的矩阵转换为指定 M*N 的矩阵&#xff0c;或者将 M*N 的矩阵转换为 1*n 的矩阵&#xff1f; 处理方法&#xff1a;使用 reshape 函数进行矩阵的行列互换 分两种情况如下&#xff1a; 一、将 1*n 的矩阵转换为指定 M*N 的矩阵 假如有4个坐标值&a…...

OpenMesh 网格面片随机赋色

文章目录 一、简介二、实现代码三、实现效果一、简介 OpenMesh中的赋色方式与Easy3D很是类似,它统一有一个属性数组来进行管理,我们在进行赋色等操作时,必须要首先添加该属性才能进行使用,这里也进行记录一下(法向量等特征也是类似的操作)。 二、实现代码 #define _USE_…...

SpringSecurity源码学习一:过滤器执行原理

目录 1. web过滤器Filter1.1 filter核心类1.2 GenericFilterBean1.3 DelegatingFilterProxy1.3.1 原理1.3.2 DelegatingFilterProxy源码 2. FilterChainProxy源码学习2.1 源码2.1.1 doFilterInternal方法源码2.1.1.1 getFilters()方法源码2.1.1.2 VirtualFilterChain方法源码 3…...

8.2 JUC - 4.Semaphore

目录 一、是什么&#xff1f;二、简单使用三、semaphore应用四、Semaphore原理 一、是什么&#xff1f; Semaphore&#xff1a;信号量&#xff0c;用来限制能同时访问共享资源的线程上限 二、简单使用 public class TestSemaphore {public static void main(String[] args) …...

前端try和catch

为什么要使用try catch 使用try...catch语句是为了处理和管理可能会在程序运行过程中发生的异常或错误情况。以下是一些使用try...catch的主要原因&#xff1a; 错误处理&#xff1a;在开发过程中&#xff0c;无法避免地会出现各种错误&#xff0c;如网络请求失败、数据解析错误…...

Unity可视化Shader工具ASE介绍——2、ASE的Shader创建和输入输出

大家好&#xff0c;我是阿赵&#xff0c;这里继续介绍Unity可视化写Shader的ASE插件的用法。上一篇介绍了ASE的安装和编辑器界面分布&#xff0c;这一篇主要是通过一个简单的例子介绍shader的创建和输入输出。 一、ASE的Shader创建 这里先选择Surface类型的Shader&#xff0c;…...

目标检测算法改进系列之Backbone替换为Swin Transformer

Swin Transformer简介 《Swin Transformer: Hierarchical Vision Transformer using Shifted Windows》作为2021 ICCV最佳论文&#xff0c;屠榜了各大CV任务&#xff0c;性能优于DeiT、ViT和EfficientNet等主干网络&#xff0c;已经替代经典的CNN架构&#xff0c;成为了计算机…...

【技术干货】如何通过 DP 实现支持经典蓝牙的联网单品设备与 App 配对

经典蓝牙模块&#xff08;Classic Bluetooth&#xff09;主要用于呼叫和音频传输&#xff0c;所以经典蓝牙最主要的特点就是功耗大&#xff0c;传输数据量大。蓝牙耳机、蓝牙音箱等场景大多采用经典蓝牙&#xff0c;因为蓝牙是为传输声音而设计的&#xff0c;是短距离音频传输的…...

【Unity Build-In管线的SurfaceShader剖析_PBS光照函数】

Unity Build-In管线的SurfaceShader剖析 在Unity Build-In 管线&#xff08;Universal Render Pipeline&#xff09;新建一个Standard Surface Shader文件里的代码如下&#xff1a;选中"MyPBR.Shader"&#xff0c;在Inspector面板&#xff0c;打开"Show generat…...

thinkphp5实现ajax图片上传,压缩保存到服务器

<div class"warp"><input type"file" id"file" accept"image/*" onchange"upimg(this)" /></div> <img src"" /> <script>//上传图片方法function upimg(obj){var fileData obj.…...

java_网络服务相关_gateway_nacos_feign区别联系

1. spring-cloud-starter-gateway 作用&#xff1a;作为微服务架构的网关&#xff0c;统一入口&#xff0c;处理所有外部请求。 核心能力&#xff1a; 路由转发&#xff08;基于路径、服务名等&#xff09;过滤器&#xff08;鉴权、限流、日志、Header 处理&#xff09;支持负…...

2024年赣州旅游投资集团社会招聘笔试真

2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

Yolov8 目标检测蒸馏学习记录

yolov8系列模型蒸馏基本流程&#xff0c;代码下载&#xff1a;这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中&#xff0c;**知识蒸馏&#xff08;Knowledge Distillation&#xff09;**被广泛应用&#xff0c;作为提升模型…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机

这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机&#xff0c;因为在使用过程中发现 Airsim 对外部监控相机的描述模糊&#xff0c;而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置&#xff0c;最后在源码示例中找到了&#xff0c;所以感…...

基于Java+VUE+MariaDB实现(Web)仿小米商城

仿小米商城 环境安装 nodejs maven JDK11 运行 mvn clean install -DskipTestscd adminmvn spring-boot:runcd ../webmvn spring-boot:runcd ../xiaomi-store-admin-vuenpm installnpm run servecd ../xiaomi-store-vuenpm installnpm run serve 注意&#xff1a;运行前…...

Python实现简单音频数据压缩与解压算法

Python实现简单音频数据压缩与解压算法 引言 在音频数据处理中&#xff0c;压缩算法是降低存储成本和传输效率的关键技术。Python作为一门灵活且功能强大的编程语言&#xff0c;提供了丰富的库和工具来实现音频数据的压缩与解压。本文将通过一个简单的音频数据压缩与解压算法…...

xmind转换为markdown

文章目录 解锁思维导图新姿势&#xff1a;将XMind转为结构化Markdown 一、认识Xmind结构二、核心转换流程详解1.解压XMind文件&#xff08;ZIP处理&#xff09;2.解析JSON数据结构3&#xff1a;递归转换树形结构4&#xff1a;Markdown层级生成逻辑 三、完整代码 解锁思维导图新…...

大数据驱动企业决策智能化的路径与实践

&#x1f4dd;个人主页&#x1f339;&#xff1a;慌ZHANG-CSDN博客 &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; 一、引言&#xff1a;数据驱动的企业竞争力重构 在这个瞬息万变的商业时代&#xff0c;“快者胜”的竞争逻辑愈发明显。企业如何在复杂环…...