当前位置: 首页 > news >正文

python-arima模型statsmodels库实现-有数据集(续)-statsmodels-0.9.0版本

python-arima模型statsmodels库实现-有数据集(续)

这篇博客是上一篇python-arima模型statsmodels库实现的续集,上一篇采用的statsmodels版本应该要高一点,如果使用低版本的statsmodels代码会有bug,这一篇则是针对statsmodels-0.9.0版本的代码。

代码如下:

#coding=gbk
import  numpy  as np
import pandas as pd
import os
from numpy import NaN
from numpy import nan
import matplotlib.pyplot as plt
import statsmodels.api as sm     #acf,pacf图
from statsmodels.tsa.stattools import adfuller  #adf检验
from pandas.plotting import autocorrelation_plot
from statsmodels.tsa.arima_model import ARIMA
from statsmodels.stats.diagnostic import acorr_ljungboximport statsmodels.api as sm
import matplotlib as mpl
path="E:/data/china_data.xlsx"
# 为了控制计算量,我们限制AR最大阶不超过6,MA最大阶不超过4。plt.style.use('fivethirtyeight')
mpl.rcParams['font.sans-serif'] = ['SimHei']
mpl.rcParams['font.serif'] = ['SimHei']
mpl.rcParams['axes.unicode_minus'] = False
df=pd.read_excel(path)
#print(df)
#help(df)#for index, row in df.iterrows():df=df.replace(NaN, "null")
#  print(index, row)
print(df)
def  f(column):r=0inde1=0index2=len(column)-1for i in range(len(column)):#   print(column[len(column)-i-1])if   column[len(column)-i-1] is "null" and r==1:index2=ireturn index1,index2if   column[len(column)-i-1]!= "null" and r==0:index1=ir=1return index1,index2#df['时间(年)']=pd.to_datetime(df['时间(年)'])print(df.columns)
print(df[df.columns[0]])
indexz=df.columns[0]def adf_test(data):#小于0.05则是平稳序列# print("data:",data.values)data_z=np.array(list(data.values))#print(data_z.reshape(-1,))t = adfuller(data_z.reshape(-1,))print("p-value:",t[1])
def  box_pierce_test(data):#小于0.05,不是白噪声序列print(acorr_ljungbox(data, lags=1)) def  stability_judgment(data):fig = plt.figure(figsize=(12,8))ax1=fig.add_subplot(211)fig = sm.graphics.tsa.plot_acf(data,lags=5,ax=ax1)ax2 = fig.add_subplot(212)fig = sm.graphics.tsa.plot_pacf(data,lags=5,ax=ax2)plt.show()def  model_fit(data,df,index,length,index1,index2):data_diff=df[["时间(年)",index]][length-index2:length-index1]#  sm.tsa.arma_order_select_ic(data_diff,max_ar=6,max_ma=4,ic='aic')['aic_min_order']  # AIC#对模型进行定阶pmax = int(len(data) / 10)    #一般阶数不超过 length /10qmax = int(len(data) / 10)if  pmax>4:pmax=6if  qmax>4:qmax=4bic_matrix = []print("data",data)# help(sm.tsa.arima.ARIMA)for p in range(pmax +1):temp= []for q in range(qmax+1):try:#  ARIMA(train_data, order=(1,1,1))# print(sm.tsa.arima.ARIMA(data,order=(p,1,q)).fit())temp.append(sm.tsa.ARIMA(data,order=(p,1,q)).fit().bic)#  print(temp)except:temp.append(None)# temp.append(sm.tsa.arima.ARIMA(data,order=(p,1,q)).fit().bic)bic_matrix.append(temp)bic_matrix = pd.DataFrame(bic_matrix)   #将其转换成Dataframe 数据结构print("bic_matrix",bic_matrix)p,q = bic_matrix.stack().astype(float).idxmin()   #先使用stack 展平, 然后使用 idxmin 找出最小值的位置print(u'BIC 最小的p值 和 q 值:%s,%s' %(p,q))  #  BIC 最小的p值 和 q 值:0,1model = sm.tsa.ARIMA(data, order=(p,1,q)).fit()model.summary()        #生成一份模型报告predictions_ARIMA_diff = pd.Series(model.fittedvalues, copy=True)print(predictions_ARIMA_diff)model.forecast(5)   #为未来5天进行预测, 返回预测结果, 标准误差, 和置信区间for index, column in df.iteritems():if index==indexz:continueindex1,index2 =f(column)length=len(column)# print("index1 index2:",index1,index2)#  print(column[length-index2-1:length-index1])print(index)df[index]=df[index].replace( "null",0)df[index].astype('float')df[str(index)+"diff1"]=df[index].diff(1)df[str(index)+"diff2"]=df[index+"diff1"].diff(1)# 一阶差分还原# tmpdata2:原数据# pred:一阶差分后的预测数据#df_shift = tmpdata2['ecpm_tomorrow'].shift(1)#predict = pred.add(df_shift)# predict = pred + df_shift# print(index2-index1)#print(df[["时间(年)",index]][length-index2:length-index1])adf_test(df[[index]][length-index2:length-index1])box_pierce_test(df[[index]][length-index2:length-index1])model_fit(df[[index]][length-index2:length-index1],df,index,length,index1,index2)## model_fit(data,p,q)stability_judgment(df[[index]][length-index2:length-index1])stability_judgment(df[[str(index)+"diff1"]][length-index2:length-index1])#  stability_judgment(df[[str(index)+"diff2"]][length-index2:length-index1])plt.plot(df[["时间(年)"]][length-index2:length-index1],df[[index]][length-index2:length-index1],label="diff0")plt.plot(df[["时间(年)"]][length-index2:length-index1],df[[str(index)+"diff1"]][length-index2:length-index1],label="diff1")#   plt.plot(df[["时间(年)"]][length-index2:length-index1],df[[str(index)+"diff2"]][length-index2:length-index1],label="diff2")# df[["时间(年)",index]][length-index2:length-index1].plot(x=indexz,y=index,figsize=(9,9))plt.xlabel("时间(年)")plt.ylabel(index)plt.legend()plt.show()os.system("pause")

运行结果如下:
在这里插入图片描述
大家可在这里插入图片描述

大家可以学习一下哈。

相关文章:

python-arima模型statsmodels库实现-有数据集(续)-statsmodels-0.9.0版本

python-arima模型statsmodels库实现-有数据集(续) 这篇博客是上一篇python-arima模型statsmodels库实现的续集,上一篇采用的statsmodels版本应该要高一点,如果使用低版本的statsmodels代码会有bug,这一篇则是针对stat…...

JVM源码剖析之线程的创建过程

说在前面: 对于Java线程的创建这个话题,似乎已经被"八股文"带偏~ 大部分Java程序员从"八股文"得知创建Java线程有N种方式,比如new Thread、new Runnable、Callable、线程池等等~ 而笔者写下这篇文…...

ansible的介绍安装与模块

目录 一、ansible简介 二、ansible特点 三、Ansible核心组件与工作原理 1、核心组件 2、工作原理 四、ansible的安装 五、ansible 命令行模块 1.command 模块 2.shell 模块 3.cron 模块 4.user 模块 5.group 模…...

el-form简单封装一个列表页中的搜索栏

父组件如何使用 代码中注释很多, 应该很容易理解 <template><div><wgySearchv-model"searchDefault":fields"searchFields"reset"reset"submit"submit"><!-- 通过 slot 自定义的组件 传啥都行 --><te…...

【Python 2】列表 模式匹配 循环 dict set 可变对象与不可变对象

Python内置的一种数据类型是列表&#xff1a;list 变量classmates就是一个list。用len()函数可以获得list元素的个数 用索引来访问list中每一个位置的元素 当索引超出了范围时&#xff0c;Python会报一个IndexError错误&#xff0c;所以&#xff0c;要确保索引不要越界&#xf…...

深度学习—cv动物/植物数据集

文章目录 动物相关植物相关 动物相关 Edinburgh Pig Behavior Video Dataset:https://homepages.inf.ed.ac.uk/rbf/PIGDATA/ WLD 动物目标检测数据集: https://github.com/hellock/WLD 猪脸识别&#xff1a;https://blog.51cto.com/u_15404184/5289690 AFD动物面部数据集&…...

高效团队协作软件推荐:提升工作效率的优选方案!

使用团队协作软件有什么好处&#xff1f;可以摆脱过时的电子表格&#xff0c;有了单一的真实来源&#xff0c;您可以随时检查任何任务并获得可用的最新信息。 一目了然地查看所有正在进行的工作&#xff0c;看板式面板、甘特图和燃尽图等可视化工具可让您随时轻松获得项目的高级…...

Mac中使用virtualenv和virtualenvwrapper

Virtualenv 介绍 在使用 Python 开发的过程中&#xff0c;工程一多&#xff0c;难免会碰到不同的工程依赖不同版本的库的问题&#xff1b;亦或者是在开发过程中不想让物理环境里充斥各种各样的库&#xff0c;引发未来的依赖灾难。 因此&#xff0c;我们需要对于不同的工程使…...

wpf webBrowser控件 常用的函数和内存泄漏问题

介绍 WebBrowsers可以让我们在窗体中进行导航网页。 WebBrowser控件内部使用ie的引擎&#xff0c;因此使用WebBrowser我们必须安装ie浏览器&#xff08;windows默认安装的&#xff09;。 使用 直接在xmal中使用webBrowser控件 <WebBrowser x:Name"WebBrowser1"…...

AI游戏设计的半年度复盘;大模型+智能音箱再起波澜;昇思大模型技术公开课第2期;出海注册经验分享;如何使用LoRA微调Llama 2 | ShowMeAI日报

&#x1f440;日报&周刊合集 | &#x1f3a1;生产力工具与行业应用大全 | &#x1f9e1; 点赞关注评论拜托啦&#xff01; &#x1f525; 进步or毁灭&#xff1a;Nature 调研显示 1600 科学家对AI的割裂态度 国际顶级期刊 Nature 最近一项调研很有意思&#xff0c;全球 160…...

多线程 - 锁策略 CAS

常见的锁策略 此处谈到的锁策略,不局限于 Java,C,Python,数据库,操作系统……但凡是涉及到锁,都是可以应用到下列的锁策略的 乐观锁 vs 悲观锁 锁的实现者,预测接下来锁冲突(锁竞争,两个线程针对一个对象加锁,产生阻塞等待了)的概率是大,还是不大,根据这个冲突的概率,来接下…...

VP记录——The 2021 CCPC Weihai Onsite

网址 2021CCPC威海 赛时过题与罚时 A.Goodbye, Ziyin! 签到题&#xff0c;队友写的 #include<bits/stdc.h> using namespace std; int cnt[10], de[1000010]; int main() {int n;cin >> n;for(int i 1; i < n; i) {int u, v;scanf("%d %d", &…...

JavaWeb---Servlet

1.Srvlet概述 Servlet是运行在java服务器端的程序&#xff0c;用于接收和响应来着客户端基于HTTP协议的请求 如果想实现Servlet的功能&#xff0c;可以通过实现javax。servlet。Servlet接口或者继承它的实现类 核心方法&#xff1a;service&#xff08;&#xff09;&#xf…...

英语——方法篇——单词——谐音法+拼音法——50个单词记忆

theatre&#xff0c;剧场&#xff0c;太后th吃eat热re食物&#xff0c;就去剧场了 loud dolphin&#xff0c;做do脸皮厚plh在。。。里 humid&#xff0c;hu湖mi米d的 blender&#xff0c;b爸lend借给er儿。 tragedy&#xff0c;tr土人...

35道Rust面试题

这套Rust面试题包括了填空题、判断题、连线题和编码题等题型。 选择题 1 &#xff0c;下面哪个是打印变量language的正确方法&#xff1f; A&#xff0c;println("{}", language); B&#xff0c;println(language); C&#xff0c;println!("{}", langu…...

01 时钟配置初始化,debug

1. 开启debug series&#xff0c;否则只能下载一次&#xff0c;再次下载要配置boot 2.f0外部时钟配置 h750 配置 实测可用...

Halcon我的基础教程(一)(我的菜鸟教程笔记)-halcon仿射变换(Affine Transformation)的探究与学习

目录 什么是仿射变换?仿射变换有哪些方式?任何仿射变换都能由以下基本变换构造而来:在Halocn中,仿射变换具有重要的作用,那我们本文章重点讨论仿射变换基础性知识。 使用Halcon中的重要算子,仿射变换一般解决步骤,案例应用会在以后的文章中我们重点解答与讨论。 我们首先…...

c++视觉---中值滤波处理

中值滤波&#xff08;Median Filter&#xff09;是一种常用的非线性平滑滤波方法&#xff0c;用于去除图像中的噪声。它不像线性滤波&#xff08;如均值滤波或高斯滤波&#xff09;那样使用权重来计算平均值或加权平均值&#xff0c;而是选择滤波窗口内的像素值中的中间值作为输…...

Edge使用猴油脚本实战(实验室安全考试系统刷在线时长——网站永久自动刷新)

介绍 篡改猴 (Tampermonkey) 是拥有 超过 1000 万用户 的最流行的浏览器扩展之一。它允许用户自定义并增强您最喜爱的网页的功能。用户脚本是小型 JavaScript 程序&#xff0c;可用于向网页添加新功能或修改现有功能。使用 篡改猴&#xff0c;您可以轻松在任何网站上创建、管理…...

Vue 中 KeepAlive 内置缓存使用

KeepAlive 介绍及使用场景 KeepAlive 是 vue 中的内置组件&#xff0c;当多个组件动态切换时可以对实例状态进行缓存&#xff0c;用法如下 <router-view v-slot"{ Component }"><keep-alive><component :is"Component" /></keep-al…...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

srs linux

下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935&#xff0c;SRS管理页面端口是8080&#xff0c;可…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

代理篇12|深入理解 Vite中的Proxy接口代理配置

在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库&#xff0c;专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性&#xff0c;并提供了一个通用的框架&…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机

这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机&#xff0c;因为在使用过程中发现 Airsim 对外部监控相机的描述模糊&#xff0c;而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置&#xff0c;最后在源码示例中找到了&#xff0c;所以感…...

OD 算法题 B卷【正整数到Excel编号之间的转换】

文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的&#xff1a;a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...