当前位置: 首页 > news >正文

AI游戏设计的半年度复盘;大模型+智能音箱再起波澜;昇思大模型技术公开课第2期;出海注册经验分享;如何使用LoRA微调Llama 2 | ShowMeAI日报

👀日报&周刊合集 | 🎡生产力工具与行业应用大全 | 🧡 点赞关注评论拜托啦!

🔥 进步or毁灭:Nature 调研显示 1600+ 科学家对AI的割裂态度

国际顶级期刊 Nature 最近一项调研很有意思,全球 1600 多名科研人员对AI工具的态度非常「割裂」:部分认为AI对科研帮助颇多,另一部分人则充满深深的忧虑;部分人的日常工作已经离不开AI,有些则完全不使用。这其实也是社会公众对AI工具的观点缩影。

例如,AI带来的积极影响被广泛认可,比如更快地处理数据、加速海量计算能力、节约时间和经费;但是负面影响也让科研人员们警惕,比如导致了依赖模式识别而不是深刻理解、在数据中强化偏见或歧视、增加欺诈概率、研究无法重现等等。更多组的数据分析可以前往 ⋙ 阅读原文

🏆 PICO 2023 首届 XR 开发者挑战赛

https://www.picoxr.com/cn/2023picodevjam

PICO 2023 首届 XR 开发者大赛,是 PICO 公司举办的内容生态开发者大赛,通过比赛形式以促进 PICO MR/VR 内容生态繁荣,以及拉动更多开发者关注 MR/VR 领域。

本次比赛面向消费者&行业,提供了开发工具、指导、投资机会、面试直通、获奖激励等多方位的支持。以下是比赛关键时间节点,感兴趣可以前往主页了解更多信息:

  • 9月25日:系统开放报名

  • 10月2日:作品提报开启

  • 11月10日:作品提报截止

  • 11月13日-30日:评委评选

  • 12月5日:颁奖仪式

🧩 LLM for GamePlay:LLM 大模型驱动玩法设计的福与祸

这是一位AI游戏一线研发者的半年度总结,从技术应用的角度拆解了 LLM for gameplay 课题,是一篇非常真实朴素的行业实践分享,有很多金句和闪光的观点。

从最初的兴奋或无限遐想,到现在感受到的骨感现实,「屠龙刀并不一定合适所有的舞台」逐步成为行业新共识。以下是文章核心观点,推荐读一读原文,所有行业的发展都会经历这样U型转弯的过程:

  1. LLM 是万能的映射,而非万能的生成:LLM 并不能带来无限的游戏表现力,除文本外它依旧几乎完全依赖于资产开发本身

  2. LLM 尝试理解一切,但游戏无法包含一切:只有当游戏内状态的复杂度到一定规模,且能比较自然地转译 (encode) 成语义表达,LLM 的屠龙技才算是有用武之地

  3. LLM 正在努力变得万能,但游戏不一定需要万能:LLM 的映射能力也有侧重点,可量化的最优化问题也许其他AI技术会是更合理的选型

作者还分享了一个系统架构图,来讨论 LLM 如何用于构建角色和赋能场景:

  • Humanity:建模角色的人格、思维过程、情绪认知等脑内信息和过程

  • Speaker:建模角色的对话行为,也包括角色的心理活动、剧情旁白等文字表现

  • Evolver:角色对外界的行为决策及其具体执行 (action),和对应结果的结算 (resolving) ⋙ 阅读原文

👀 大模型有能力打穿「智能音箱/硬件」的市场壁垒么?

2023年上半年,国内智能音箱市场由小度、小米和天猫精灵三强鼎立,并先后宣布接入大模型。正当智能音箱又一轮激烈竞争来临之际,百度系却临阵换帅,景鲲辞职创业为这个「AGI产品必争之地」的战争再添变数。

为什么智能音箱是 AGI 产品路线图上的兵家必争之地?大模型能撑起来智能硬件这个巨大的想象空间么?我们距离智能印象打穿应用壁垒还有多长时间? 这篇文章给出了详细的解释和预判 ⋙ 阅读原文

👩‍💻 出海注册经验分享,搞定英国公司、Wise银行账号、苹果开发者和Stripe

这是一篇即刻上的经验分享贴,作者 @Junping1 全程在国内搞注册好了英国公司、Wise银行账号,Stripe和苹果开发者,并分享了非常详细的操作攻略。总体来说,操作成本不高、流程也不复杂,总共花费不到两千人民币,用时两三周。

扫码即可前往星球查看全部分享内容,以及操作建议帖的链接,也可以前往作者账号评论区互动 ⋙ 即刻@Junping1

📚 如何使用 LoRA 微调 Llama 2

这是一篇技术分享贴,讨论了使用LoRA 对大语言模型 Llama 2进行微调的过程,以及微调的好处。以下是文章要点,可以定位感兴趣的内容并前往阅读原文:

  1. 为什么微调:大语言模型微调后可以减少幻觉,使模型适应于特定的用例,并去除不希望的行为或者或添加希望的行为

  2. 微调与提示工程:微调比提示工程的成本更低,因为在硬件加速方面没有前期成本,还可以在微调过程中将更多数据适应到模型

  3. 大语言模型微调策略:已经提出了几种用于微调大语言模型的方法,其中之一就是 LoRA

  4. 使用LoRA微调大语言模型:LoRA 的工作原理是冻结语言模型的权重,并在变压器层中引入新的矩阵,从而减少了可训练参数的数量,并使得在较少的GPU计算下进行微调成为可能

  5. LoRA的好处:通过交换 LoRA 权重,可以使用同一模型进行不同的任务,从而减少了存储不同模型所需的存储空间;并且只有LoRA矩阵正在优化,因此能训练得更快 ⋙ 阅读原文

📋 通过 LLMs 实现需求的背后逻辑

这篇文章以「通过 LangChain 实现文档问答机器人」示例,清楚地说了使用 AI 构建一个应用背后的逻辑。不同于一般的实战教程分享,这篇内容对于我们思考和设计AI产品会非常有帮助。

当然作者并没有回避技术方向的信息,如果感兴趣可以跟随作者提供的链接前往了解更多代码、框架等内容。以下是文章的关键知识点,可以阅读全文查看作者更详细的解释:

  1. LangChain是基于大语言模型的应用框架,降低了开发成本,减少了单一模型对产品的风险

  2. 使用LangChain可以实现文档问答机器人,包括数据清洗、向量存储和LLMs的优化

  3. 向量是降低AI使用费用的工具,常用的向量数据库有Pincone、Redis、Chroma、PostgreSQL等

  4. 微调是让GPT模型更好理解特定领域内容的技术,需要大量训练文本,训练文本越多,微调的价格越高

  5. OpenAI的API更新新增了函数调用功能,让GPT根据用户问题匹配函数并准备入参,降低了应用构建的成本 ⋙ 阅读原文

📺 昇思 MindSpore技术公开课第二期,大模型专题即将开始

https://xihe.mindspore.cn/course/foundation-model-v2/introduction

昇思MindSpore技术公开课大模型专题第二期课程来了!自10月14日起,每双周六14:00-15:30在B站 @MindSpore官方 账号直播开课。本期课程紧跟「大模型」技术热点,并且手把手教你构建大模型,讲师团也非常强大。

这是课程安排,有感兴趣的话题,可以在官网报名,当然可以关注 ShowMeAI 社区通知,记得一起来听课:

  • [课前学习] MindSpore Transformers大模型套件:架构讲解与使用入门:介绍 MindSpore Transformers 大模型套件现状,讲解套件架构及高阶接口设计,走读工程架构模块代码,学习基本使用方式

  • ChatGLM:介绍技术公开课整体课程安排;ChatGLM模型结构,走读代码演示ChatGLM推理部署

  • 多模态遥感智能解译基础模型:介绍多模态遥感智能解译基础模型的原理、训推等相关技术,以及模型相关行业应用

  • ChatGLM2:介绍ChatGLM2模型结构,走读代码演示ChatGLM推理部署

  • 文本生成解码原理:介绍Beam search和采样的原理及代码实现

  • LLAMA:介绍LLAMA模型结构,走读代码演示推理部署,介绍Alpaca

  • LLAMA2:介绍LLAMA2模型结构,走读代码演示LLAMA2 chat部署

  • CPM:介绍CPM-Bee预训练、推理、微调及代码现场演示

  • 高效参数微调:介绍Lora、(P-Tuning)原理及代码实现

  • 量化:介绍低比特量化等相关模型量化技术

  • 框架LangChain模块解析:解析Models、Prompts、Memory、Chains、Agents、Indexes、Callbacks模块,及案例分析

  • LangChain对话机器人综合案例MindSpore Transformers本地模型与LangChain框架组合使用,通过LangChain框架管理向量库并基于向量库对MindSpore Transformers本地模型问答进行优化 ⋙ 了解更多

感谢贡献一手资讯、资料与使用体验的 ShowMeAI 社区同学们!

◉ 点击 👀日报&周刊合集,订阅话题 #ShowMeAI日报,一览AI领域发展前沿,抓住最新发展机会!

◉ 点击 🎡生产力工具与行业应用大全,一起在信息浪潮里扑腾起来吧!

相关文章:

AI游戏设计的半年度复盘;大模型+智能音箱再起波澜;昇思大模型技术公开课第2期;出海注册经验分享;如何使用LoRA微调Llama 2 | ShowMeAI日报

👀日报&周刊合集 | 🎡生产力工具与行业应用大全 | 🧡 点赞关注评论拜托啦! 🔥 进步or毁灭:Nature 调研显示 1600 科学家对AI的割裂态度 国际顶级期刊 Nature 最近一项调研很有意思,全球 160…...

多线程 - 锁策略 CAS

常见的锁策略 此处谈到的锁策略,不局限于 Java,C,Python,数据库,操作系统……但凡是涉及到锁,都是可以应用到下列的锁策略的 乐观锁 vs 悲观锁 锁的实现者,预测接下来锁冲突(锁竞争,两个线程针对一个对象加锁,产生阻塞等待了)的概率是大,还是不大,根据这个冲突的概率,来接下…...

VP记录——The 2021 CCPC Weihai Onsite

网址 2021CCPC威海 赛时过题与罚时 A.Goodbye, Ziyin! 签到题&#xff0c;队友写的 #include<bits/stdc.h> using namespace std; int cnt[10], de[1000010]; int main() {int n;cin >> n;for(int i 1; i < n; i) {int u, v;scanf("%d %d", &…...

JavaWeb---Servlet

1.Srvlet概述 Servlet是运行在java服务器端的程序&#xff0c;用于接收和响应来着客户端基于HTTP协议的请求 如果想实现Servlet的功能&#xff0c;可以通过实现javax。servlet。Servlet接口或者继承它的实现类 核心方法&#xff1a;service&#xff08;&#xff09;&#xf…...

英语——方法篇——单词——谐音法+拼音法——50个单词记忆

theatre&#xff0c;剧场&#xff0c;太后th吃eat热re食物&#xff0c;就去剧场了 loud dolphin&#xff0c;做do脸皮厚plh在。。。里 humid&#xff0c;hu湖mi米d的 blender&#xff0c;b爸lend借给er儿。 tragedy&#xff0c;tr土人...

35道Rust面试题

这套Rust面试题包括了填空题、判断题、连线题和编码题等题型。 选择题 1 &#xff0c;下面哪个是打印变量language的正确方法&#xff1f; A&#xff0c;println("{}", language); B&#xff0c;println(language); C&#xff0c;println!("{}", langu…...

01 时钟配置初始化,debug

1. 开启debug series&#xff0c;否则只能下载一次&#xff0c;再次下载要配置boot 2.f0外部时钟配置 h750 配置 实测可用...

Halcon我的基础教程(一)(我的菜鸟教程笔记)-halcon仿射变换(Affine Transformation)的探究与学习

目录 什么是仿射变换?仿射变换有哪些方式?任何仿射变换都能由以下基本变换构造而来:在Halocn中,仿射变换具有重要的作用,那我们本文章重点讨论仿射变换基础性知识。 使用Halcon中的重要算子,仿射变换一般解决步骤,案例应用会在以后的文章中我们重点解答与讨论。 我们首先…...

c++视觉---中值滤波处理

中值滤波&#xff08;Median Filter&#xff09;是一种常用的非线性平滑滤波方法&#xff0c;用于去除图像中的噪声。它不像线性滤波&#xff08;如均值滤波或高斯滤波&#xff09;那样使用权重来计算平均值或加权平均值&#xff0c;而是选择滤波窗口内的像素值中的中间值作为输…...

Edge使用猴油脚本实战(实验室安全考试系统刷在线时长——网站永久自动刷新)

介绍 篡改猴 (Tampermonkey) 是拥有 超过 1000 万用户 的最流行的浏览器扩展之一。它允许用户自定义并增强您最喜爱的网页的功能。用户脚本是小型 JavaScript 程序&#xff0c;可用于向网页添加新功能或修改现有功能。使用 篡改猴&#xff0c;您可以轻松在任何网站上创建、管理…...

Vue 中 KeepAlive 内置缓存使用

KeepAlive 介绍及使用场景 KeepAlive 是 vue 中的内置组件&#xff0c;当多个组件动态切换时可以对实例状态进行缓存&#xff0c;用法如下 <router-view v-slot"{ Component }"><keep-alive><component :is"Component" /></keep-al…...

语言模型编码中/英文句子格式详解

文章目录 前言一、Bert的vocab.txt内容查看二、BERT模型转换方法(vocab.txt)三、vocab内容与模型转换对比四、中文编码总结 前言 最近一直在学习多模态大模型相关内容&#xff0c;特别是图像CV与语言LLM模型融合方法&#xff0c;如llama-1.5、blip、meta-transformer、glm等大…...

【Node.js】路由

基础使用 写法一&#xff1a; // server.js const http require(http); const fs require(fs); const route require(./route) http.createServer(function (req, res) {const myURL new URL(req.url, http://127.0.0.1)route(res, myURL.pathname)res.end() }).listen…...

matlab 2ask 4ask 信号调制

1 matlab 2ask close all clear all clcL =1000;Rb=2822400;%码元速率 Fs =Rb*8; Fc=Rb*30;%载波频率 Ld =L*Fs/Rb;%产生载波信号 t =0:1/Fs:L/Rb;carrier&...

Python利用jieba分词提取字符串中的省市区(字符串无规则)

目录 背景库&#xff08;jieba&#xff09;代码拓展结尾 背景 今天的需求就是在一串字符串中提取包含&#xff0c;省、市、区&#xff0c;该字符串不是一个正常的地址;,如下字符串 "安徽省、浙江省、江苏省、上海市,冷运标快首重1kg价格xx元,1.01kg(含)-5kg(不含)续重价…...

MuLogin防关联浏览器帮您一键实现Facebook账号多开

导言&#xff1a; 在当今数字化时代&#xff0c;社交媒体应用程序的普及程度越来越高。Facebook作为全球最大的社交媒体平台之一&#xff0c;拥有数十亿的用户。然而&#xff0c;对于一些用户来说&#xff0c;只拥有一个Facebook账号可能无法满足他们的需求。有时&#xff0c;…...

【C语言】每日一题(半月斩)——day4

目录 选择题 1、设变量已正确定义&#xff0c;以下不能统计出一行中输入字符个数&#xff08;不包含回车符&#xff09;的程序段是&#xff08; &#xff09; 2、运行以下程序后&#xff0c;如果从键盘上输入 65 14<回车> &#xff0c;则输出结果为&#xff08; &…...

Are you sure you want to continue connecting (yes/no) 每次ssh进

Lunix scp等命令不需要输入yes确认方法_scp不需要确认-CSDN博客 方法一&#xff1a;连接时加入StrictHostKeyCheckingno ssh -o StrictHostKeyCheckingno root192.168.1.100 方法二&#xff1a;修改/etc/ssh/ssh_config配置文件&#xff0c;添加&#xff1a; StrictHostKeyC…...

网络与信息系统安全设计规范

1、总则 1.1、目的 为规范XXXXX单位信息系统安全设计过程&#xff0c;确保整个信息安全管理体系在信息安全设计阶段符合国家相关标准和要求&#xff0c;特制订本规范。 1.2、范围 本规范适用于XXXXX单位在信息安全设计阶段的要求和规范管理。 1.3、职责 网络安全与信息化…...

在Linux怎么用vim实现把一个文件里面的文本复制到另一个文件里面

2023年10月9日&#xff0c;周一下午 我昨天遇到了这个问题&#xff0c;但在网上没找到图文并茂的博客&#xff0c;于是我自己摸索出解决办法后&#xff0c;决定写一篇图文并茂的博客。 情景 假设现在我要用vim把file_transfer.cpp的内容复制到file_transfer.hpp里面 第一步 …...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

C++ 基础特性深度解析

目录 引言 一、命名空间&#xff08;namespace&#xff09; C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用&#xff08;reference&#xff09;​ C 中的引用​ 与 C 语言的对比​ 四、inline&#xff08;内联函数…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口&#xff08;适配服务端返回 Token&#xff09; export const login async (code, avatar) > {const res await http…...