【MySQL】深入解析MySQL双写缓冲区
原创不易,注重版权。转载请注明原作者和原文链接
文章目录
- 为什么需要Doublewrite Buffer
- Doublewrite Buffer原理
- Doublewrite Buffer和redo log
- Doublewrite Buffer相关参数
- 总结
在数据库系统的世界中,保障数据的完整性和稳定性是至关重要的任务。为了实现这一目标,MySQL内部使用了许多精巧而高效的机制。
InnoDB是MySQL中一种常用的事务性存储引擎,它具有很多优秀的特性。其中,Doublewrite Buffer是InnoDB的一个重要特性之一,本文将介绍Doublewrite Buffer的原理和应用,帮助读者深入理解其如何提高MySQL的数据可靠性并防止可能的数据损坏。
为什么需要Doublewrite Buffer
我们常见的服务器一般都是Linux操作系统,Linux文件系统页(OS Page)的大小默认是4KB。而MySQL的页(Page)大小默认是16KB。
可以使用如下命令查看MySQL的Page大小:
SHOW VARIABLES LIKE 'innodb_page_size';
一般情况下,其余程序因为需要跟操作系统交互,所以它们的页(Page)大小都为操作系统页大小的整数倍。比如,Oracle的Page大小为8KB。
MySQL程序是跑在Linux操作系统上的,理所当然要跟操作系统交互,所以MySQL中一页数据刷到磁盘,要写4个文件系统里的页。
如图所示:

需要注意的是,这个刷页的操作并非原子操作,比如我操作系统写到第二个页的时候,Linux机器断电了,这时候就会出现问题了。造成「页数据损坏」。并且这种页数据损坏靠 redo日志是无法修复的。
redo重做日志中记录的是对页的物理操作,而不是页面的全量记录,当发生「Partial Page Write(部分页写入)」问题时,出现问题的是未修改过的数据,此时redo日志无能为力。
Doublewrite Buffer的出现就是为了解决上面的这种情况,给InnoDB存储引擎提供了数据页的可靠性,虽然名字带了Buffer,但实际上Doublewrite Buffer是「内存+磁盘」的结构。
内存结构:Doublewrite Buffer内存结构由128个页(Page)构成,大小是2MB。
磁盘结构:Doublewrite Buffer磁盘结构在系统表空间上是128个页(2个区,extend1和extend2),大小是2MB。
Doublewrite Buffer的原理是,再把数据页写到数据文件之前,InnoDB先把它们写到一个叫「doublewrite buffer(双写缓冲区)」的共享表空间内,在写doublewrite buffer完成后,InnoDB才会把页写到数据文件适当的位置。
如果在写页的过程中发生意外崩溃,InnoDB会在doublewrite buffer中找到完好的page副本用于恢复。
Doublewrite Buffer原理

如上图所示,当有数据页要刷盘时:
-
页数据先通过
memcpy函数拷贝至内存中的Doublewrite Buffer中。 -
Doublewrite Buffer的内存里的数据页,会
fsync刷到Doublewrite Buffer的磁盘上,分两次写入磁盘共享表空间中(连续存储,顺序写,性能很高),每次写1MB。 -
Doublewrite Buffer的内存里的数据页,再刷到数据磁盘存储.ibd文件上(离散写)。
如果操作系统在将页写入磁盘的过程中发生了崩溃,在恢复过程中,InnoDB存储引擎可以从共享表空间中的Double write中找到该页的一个副本,将其复制到表空间文件,再应用redo日志。
所以在正常的情况下,MySQL写数据页时,会写两遍到磁盘上,第一遍是写到doublewrite buffer,第二遍是写到真正的数据文件中,这便是「Doublewrite」的由来。
我们可以通过如下命令来监控Doublewrite Buffer工作负载,该命令用于显示有关双写缓冲区(doublewrite buffer)的统计信息。‘%dblwr%’ 是一个通配符,匹配所有包含 ‘dblwr’ 的状态变量。
show global status like '%dblwr%';
这个命令可能会产生如下格式的输出:
+------------------------+-------+
| Variable_name | Value |
+------------------------+-------+
| Innodb_dblwr_writes | 1000 |
| Innodb_dblwr_pages_written | 8000 |
+------------------------+-------+
Doublewrite Buffer和redo log
在MySQL的InnoDB存储引擎中,Redo log和Doublewrite Buffer共同工作以确保数据的持久性和恢复能力。
- 当有一个DML(如INSERT、UPDATE)操作发生时, InnoDB会首先将这个操作写入redo log(内存)。这些日志被称为未检查点(uncheckpointed)的redo日志。
- 然后,在修改内存中相应的数据页之前,需要将这些更改记录在磁盘上。但是直接把这些修改的页写到其真正的位置可能会因发生故障导致页部分更新,从而导致数据不一致。因此,InnoDB的做法是先将这些修改的页按顺序写入doublewrite buffer。这就是为什么叫做 “doublewrite” —— 数据实际上被写了两次,先在doublewrite buffer,然后在它们真正的位置。
- 一旦这些页被安全地写入doublewrite buffer,它们就可以按原始的顺序写回到文件系统中。即使这个过程在写回数据时发生故障,我们仍然可以从doublewrite buffer中恢复数据。
- 最后,当事务提交时,相关联的redo log会被写入磁盘。这样即使系统崩溃,redo log也可以用来重播(replay)事务并恢复数据库。
在系统恢复期间,InnoDB会检查doublewrite buffer,并尝试从中恢复损坏的数据页。如果doublewrite buffer中的数据是完整的,那么InnoDB就会用doublewrite buffer中的数据来更新损坏的页。否则,如果doublewrite buffer中的数据不完整,InnoDB也有可能丢弃buffer内容,重新执行那条redo log以尝试恢复数据。
所以,Redo log和Doublewrite Buffer的协作可以确保数据的完整性和持久性。如果在写入过程中发生故障,我们可以从doublewrite buffer中恢复数据,并通过redo log来进行事务的重播。
Doublewrite Buffer相关参数
以下是一些与Doublewrite Buffer相关的参数及其含义:
innodb_doublewrite: 这个参数用于启用或禁用双写缓冲区。设置为1时启用,设置为0时禁用, 默认值为1。innodb_doublewrite_files: 这个参数定义了多少个双写文件被使用。默认值为2,有效范围从2到127。innodb_doublewrite_dir: 这个参数指定了存储双写缓冲文件的目录的路径。默认为空字符串,表示将文件存储在数据目录中。innodb_doublewrite_batch_size: 这个参数定义了每次批处理操作写入的字节数。默认值为0,表示InnoDB会选择最佳的批量大小。innodb_doublewrite_pages:这个参数定义了每个双写文件包含多少页面。默认值为128。
总结
Doublewrite Buffer是InnoDB的一个重要特性,用于保证MySQL数据的可靠性和一致性。
它的实现原理是通过将要写入磁盘的数据先写入到Doublewrite Buffer中的内存缓存区域,然后再写入到磁盘的两个不同位置,来避免由于磁盘损坏等因素导致数据丢失或不一致的问题。
总的来说,Doublewrite Buffer对于改善数据库性能和数据完整性起着至关重要的作用。尽管其引入了一些开销,但在大多数情况下,这些成本都被其提供的安全性和可靠性所抵消。
感谢阅读,如果本篇文章有任何错误和建议,欢迎给我留言指正。
相关文章:
【MySQL】深入解析MySQL双写缓冲区
原创不易,注重版权。转载请注明原作者和原文链接 文章目录 为什么需要Doublewrite BufferDoublewrite Buffer原理Doublewrite Buffer和redo logDoublewrite Buffer相关参数总结 在数据库系统的世界中,保障数据的完整性和稳定性是至关重要的任务。为了实现…...
u-boot 编译与运行
文章目录 u-boot 编译与运行环境配置ubuntu 版本qemu 版本u-boot 版本(master)交叉工具链版本 u-boot 源码下载生成配置文件报错情况一报错情况2 u-boot 配置编译编译脚本编译报错解决编译日志编译产物 运行 u-boot 编译与运行 本文主要介绍 u-boot 编译…...
C++QT-day2
#include <bits/stdc.h>/*自己封装一个矩形类(Rect),拥有私有属性:宽度(width)、高度(height),定义公有成员函数:初始化函数:void init(int w, int h)更改宽度的函数:set_w(int w)更改高度的函数:set_h(int h)输出该矩形的周长和面积函数:void sho…...
【Acwing187】导弹防御系统(LIS+剪枝+贪心+dfs+迭代加深)
题目描述 看本文需要准备的知识 1.最长上升子序列(lis)的算法思想和算法模板 2.acwing1010拦截导弹(lis贪心)题解 本题题解,需要知道这种贪心算法 3.简单了解dfs暴力搜索、剪枝、搜索树等概念 思路讲解 dfs求最…...
字节大佬带你五分钟掌握接口自动化测试框架
今天,我们来聊聊接口自动化测试是什么?如何开始?接口自动化测试框架怎么做? 自动化测试 自动化测试,这几年行业内的热词,也是测试人员进阶的必备技能,更是软件测试未来发展的趋势。 特别是在…...
上传文件夹里面的文件后,按树结构的table表格展示
1. 先处理最简单的 原始数据大概是这样: let fileArr [{progress: 100,status: 成功,type: 通号,webkitRelativePath: "六捷数据2023-05-04 163909/G163/Abis口详细信息_(G163)(380BL3544-0)(14984173988)(2018-01-24 174431.0740—2018-01-24 180347.9070).xls"…...
【error】root - Exception during pool initialization
报错提示:root - Exception during pool initialization. 错误原因: 配置数据库出错 我的错误配置: spring.datasource.urljdbc:mysql://localhost:3306/springboot?serverTimezoneGMT spring.datasource.nameroot spring.datasource.pass…...
【重拾C语言】九、再论函数(指针、数组、结构体作参数;函数值返回指针、结构体;作用域)
目录 前言 九、再论函数 9.1 参数 9.1.1 参数的传递规则 9.1.2 指针作参数 9.1.3 数组作参数 9.1.4 结构体作参数 a. 直接用结构体变量作函数参数 b. 用指向结构体变量的指针作函数参数 9.2 函数值 9.2.1 返回指针值 9.2.2 返回结构体值 a. 返回结构体值 b. 返回…...
Spring WebClient 基于响应式编程模型的HTTP客户端
一、简介 WebClient是一个非阻塞的、可扩展的、基于Reactive Streams规范的HTTP客户端。它提供了一种简洁的方式来进行HTTP请求,并且可以很好地与其他Spring组件集成。WebClient支持同步和异步操作,使得它非常适合用于构建响应式应用程序。 WebClient允…...
IP真人识别方法与代理IP检测技术
随着互联网的发展,IP地址在网络安全和数据分析中扮演着重要的角色。为了维护网络的安全性和识别真实用户,IP地址的真实性和来源成为了一个关键问题。 什么是IP真人识别? IP真人识别是一种技术,旨在确定IP地址背后的用户是否为真实…...
MySQL 面试知识脑图 初高级知识点
脑图下载地址:https://mm.edrawsoft.cn/mobile-share/index.html?uuid18b10870122586-src&share_type1 sql_mode 基本语法及校验规则 ONLY_FULL_GROUP_BY 对于GROUP BY聚合操作,如果在SELECT中的列,没有在GROUP BY中出现ÿ…...
【数据结构】二叉树的链式结构及实现
目录 1. 前置说明 2. 二叉树的遍历 2.1 前序、中序以及后序遍历 2.2 层序遍历 3. 节点个数及高度等 4. 二叉树的创建和销毁 1. 前置说明 在学习二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。由于现在大家对二叉树结构…...
OpenCV4(C++)—— 创建窗口滑动条来调参
文章目录 创建滑动条 —— createTrackbar 创建滑动条 —— createTrackbar createTrackbar是OpenCV中的一个函数,用于创建一个可调节的滑动条(Trackbar),以便在图像处理过程中实时调整参数 int cv::createTrackbar(const String…...
深度学习基础知识 学习率调度器的用法解析
深度学习基础知识 学习率调度器的用法解析 1、自定义学习率调度器**:**torch.optim.lr_scheduler.LambdaLR2、正儿八经的模型搭建流程以及学习率调度器的使用设置 1、自定义学习率调度器**:**torch.optim.lr_scheduler.LambdaLR 实验代码: i…...
【JUC系列-12】深入理解PriorityQueue的底层原理和基本使用
JUC系列整体栏目 内容链接地址【一】深入理解JMM内存模型的底层实现原理https://zhenghuisheng.blog.csdn.net/article/details/132400429【二】深入理解CAS底层原理和基本使用https://blog.csdn.net/zhenghuishengq/article/details/132478786【三】熟练掌握Atomic原子系列基本…...
Paddle安装
Paddle安装参考 docs/tutorials/INSTALL_cn.md PaddlePaddle/PaddleDetection - Gitee.comhttps://gitee.com/paddlepaddle/PaddleDetection/blob/release/2.6/docs/tutorials/INSTALL_cn.md # 不指定版本安装paddle-gpu python -m pip install paddlepaddle-gpu# 测试安装 …...
配置XP虚拟机和Win 10宿主机互相ping通
文章目录 一、关闭虚机和宿主机的防火墙1、关闭虚拟机的防火墙1.1方式一1.2方式二 2、关闭宿主机的防火墙 二、设置XP和宿主机VMnet8的IP地址、网关和DNS1、获取VMWare的虚拟网络配置信息2、设置XP的VMnet8的IP地址、网关和DNS3、设置宿主机VMnet8的IP地址、网关和DNS 三、获取…...
【机器学习】sklearn对数据预处理
文章目录 数据处理步骤观察数据数据无量纲化缺失值处理处理分类型特征处理连续型特征 数据处理步骤 数据无量纲化缺失值处理处理分类型特征:编码与哑变量处理连续型特征:二值化与分段 观察数据 通过pandas读取数据,通过head和info方法大致查…...
【智慧燃气】智慧燃气解决方案总体概述--终端层、网络层
关键词:智慧燃气、智慧燃气系统、智慧燃气平台、智慧燃气解决方案、智慧燃气应用、智能燃气 智慧燃气解决方案是基于物联网、大数据、云计算、移动互联网等先进技术,结合燃气行业特征,通过智能设备全面感知企业生产、环境、状态等信息的全方…...
Tomcat隔离web原理和热加载热部署
Tomcat 如何打破双亲委派机制 Tomcat 的自定义类加载器 WebAppClassLoader 打破了双亲委派机制,它首先自己尝试去加载某个类,如果找不到再代理给父类加载器,其目的是优先加载 Web 应用自己定义的类。具体实现就是重写 ClassLoader 的两个方法…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...
【力扣数据库知识手册笔记】索引
索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...
【HTML-16】深入理解HTML中的块元素与行内元素
HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...
NFT模式:数字资产确权与链游经济系统构建
NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...
全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...
API网关Kong的鉴权与限流:高并发场景下的核心实践
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 引言 在微服务架构中,API网关承担着流量调度、安全防护和协议转换的核心职责。作为云原生时代的代表性网关,Kong凭借其插件化架构…...
云原生周刊:k0s 成为 CNCF 沙箱项目
开源项目推荐 HAMi HAMi(原名 k8s‑vGPU‑scheduler)是一款 CNCF Sandbox 级别的开源 K8s 中间件,通过虚拟化 GPU/NPU 等异构设备并支持内存、计算核心时间片隔离及共享调度,为容器提供统一接口,实现细粒度资源配额…...
机器学习的数学基础:线性模型
线性模型 线性模型的基本形式为: f ( x ) ω T x b f\left(\boldsymbol{x}\right)\boldsymbol{\omega}^\text{T}\boldsymbol{x}b f(x)ωTxb 回归问题 利用最小二乘法,得到 ω \boldsymbol{\omega} ω和 b b b的参数估计$ \boldsymbol{\hat{\omega}}…...
客户案例 | 短视频点播企业海外视频加速与成本优化:MediaPackage+Cloudfront 技术重构实践
01技术背景与业务挑战 某短视频点播企业深耕国内用户市场,但其后台应用系统部署于东南亚印尼 IDC 机房。 随着业务规模扩大,传统架构已较难满足当前企业发展的需求,企业面临着三重挑战: ① 业务:国内用户访问海外服…...
