当前位置: 首页 > news >正文

FPGA project : flash_read

实验目标:

flash的普通读指令,在指定地址开始读。可以更改地址与读的数据个数。

先发送读指令+扇区地址+页地址+字节地址。

然后读数据。再把读到的串行数据转化为8bit的数据,存入fifo。

然后读出FIFO中数据,通过uart_tx模块发送给上位机。

经验总结:

接收数据:比如接收8bit的串行数据,通过miso传递。

1,先接收高位。

reg         [7:0]        data ;

那么通过data保存miso传递的数据,把串行数据,转换为并行数据。

有两种常用写法:

data <= {data[6:0],miso};

或者

data <= data << 1 + miso ;

或者:写一个cnt_bit,记录保存到第几bit。

data[cnt_bit] <= miso ;

2,先接收低位

data <= {miso,data[7:1]};

data[cnt_bit] <= miso ;

小技巧:

画时序图时不一定要先画内部信号,再画输出端口信号。

按照自己的设计思路,该到那个信号就画那个信号,画完也不要改,

写代码时,按照这个思路,这个画时序图的顺序,编写代码。

相当于再次检查一遍,即容易排错,有容易编写代码。

状态机:

模块框图:

时序图: 

代码: 

module spi (input       wire            sys_clk     ,input       wire            sys_rst_n   ,input       wire            key_flag    ,input       wire            miso        ,output      reg             cs_n        ,output      reg             sck         ,output      reg             mosi        ,output      reg             po_flag     ,output      wire    [7:0]   po_data     
);// localparam define 一般状态机的状态定义用局部参数就可以。localparam  IDLE     = 4'b0001 ,INSTRUCT = 4'b0010 ,READ     = 4'b0100 ,SEND     = 4'b1000 ;// parameter define  指令,计数器最大值,用全局参数定义。parameter   COMD_REA = 8'h03 , // comd_readADDR_SEC = 8'h00 , // address_secter 扇区地址ADDR_PAG = 8'h00 , // address_page   页地址(行地址)ADDR_BYT = 8'h00 , // assress_byte   字节地址NUM_COMD = 4'd4  ; // 用来记录在指令状态传递指令和地址byte数量parameter   CNT_MAX_BYTE = 11'd300   , // 4 + 要读出的数据。例如: 4 + 256CNT_MAX_SEND = 20'd53000 ;// reg signal define reg     [3:0]       state_c   ;reg     [3:0]       state_n   ;reg                 cnt_20_ns ;reg     [2:0]       cnt_bit   ;reg     [10:0]      cnt_byte  ;reg                 flag_b    ; // flag_bytereg                 flagBreg  ;reg                 flag_R_S  ; // flag_bytereg                 flag_RSr  ;reg     [7:0]       datInFifo ; // data_in_fiforeg                 flag_data ; // flag_data 采样标志信号reg                 flaInFifo ; // flag_in_fiforeg     [19:0]      cnt_send  ; // uart_tx模块发送1byte数据的等待时间。reg                 flaSenEnd ; // 计数器cnt_send计数到CNT_MAX_SEND - 2 拉高一个时钟周期,reg                 flag_out_fifo_reg ;// wire signal definewire                empty     ;wire                full      ;wire                flaOutFif ; // flag_out_fifo  wire    [9:0]       usedw     ; // fifo中存储的数据量   wire                IDLEtoINSTRUCT  ;wire                INSTRUCTto_READ ;wire                READtoSEND      ;wire                SENDtoIDLE      ; 
/**********************************************************************/// // reg signal describe /*******状态机采用三段式描述*******/// reg     [3:0]       state_c   ;// reg     [3:0]       state_n   ;always @(posedge sys_clk or negedge sys_rst_n) beginif(~sys_rst_n) state_c <= IDLE ;else state_c <= state_n ;endalways @(*) begincase (state_c)IDLE     :  if(IDLEtoINSTRUCT)state_n <= INSTRUCT ;else state_n <= IDLE ;INSTRUCT :  if(INSTRUCTto_READ)state_n <= READ ;else state_n <= INSTRUCT ;READ     :  if(READtoSEND)state_n <= SEND ;else state_n <= READ ;SEND     :  if(SENDtoIDLE)state_n <= IDLE ;else state_n <= SEND ;default:        state_n <= IDLE ;endcaseendassign   IDLEtoINSTRUCT  = (state_c == IDLE    ) && (key_flag) ;assign   INSTRUCTto_READ = (state_c == INSTRUCT) && (flagBreg) ; // 指令的的最后1byte发送完毕assign   READtoSEND      = (state_c == READ    ) && (flag_RSr) ; // 读完想要的最后1byteassign   SENDtoIDLE      = (state_c == SEND    ) && (flaSenEnd && empty) ;// reg                 cnt_20_ns ;always @(posedge sys_clk or negedge sys_rst_n) beginif(~sys_rst_n)cnt_20_ns <= 1'b0 ;else if(state_c == INSTRUCT || state_c == READ)cnt_20_ns <= cnt_20_ns + 1'b1 ;else if(state_c != INSTRUCT || state_c != READ)cnt_20_ns <= 1'b0 ;else cnt_20_ns <= 1'b0 ;end// reg     [2:0]       cnt_bit   ;always @(posedge sys_clk or negedge sys_rst_n) beginif(~sys_rst_n)cnt_bit <=3'd0 ;elsecase (state_c)IDLE    :   cnt_bit <=3'd0 ;INSTRUCT:   if(!cnt_20_ns && sck && cnt_bit == 7)  cnt_bit <= 3'd0 ;else if(!cnt_20_ns && sck)cnt_bit <= cnt_bit + 1'b1 ;READ    :   if(!cnt_20_ns && sck && cnt_bit == 7)  cnt_bit <= 3'd0 ;else if(!cnt_20_ns && sck)cnt_bit <= cnt_bit + 1'b1 ;SEND    :   cnt_bit <=3'd0 ;default :   cnt_bit <=3'd0 ; endcaseend// reg     [10:0]       cnt_byte  ;always @(posedge sys_clk or negedge sys_rst_n) beginif(~sys_rst_n)cnt_byte <= 4'd0 ;else if(cnt_bit == 7 && cnt_byte == CNT_MAX_BYTE - 1 && !cnt_20_ns && sck)cnt_byte <= 4'd0 ;else if(cnt_bit == 7 && !cnt_20_ns && sck)cnt_byte <= cnt_byte + 1'b1 ;else cnt_byte <= cnt_byte ;end// reg                 flag_R_S  ;// reg                 flag_b    ;always @(posedge sys_clk or negedge sys_rst_n) beginif(~sys_rst_n) beginflag_b   <= 1'b0 ;flag_R_S <= 1'b0 ;endelsecase (state_c)IDLE    :   beginflag_b <= 1'b0 ;flag_R_S <= 1'b0 ;end         INSTRUCT:   begin if((cnt_byte == NUM_COMD - 1) && (cnt_bit == 7) && !cnt_20_ns && sck)flag_b <= 1'b1 ;else flag_b <= flag_b ;flag_R_S <= 1'b0 ;endREAD    :   beginif(cnt_byte == NUM_COMD)flag_R_S <= 1'b0 ;else if((cnt_byte == CNT_MAX_BYTE - 1) && (cnt_bit == 7) && !cnt_20_ns && sck)flag_R_S <= 1'b1 ;flag_b <= 1'b0 ;endSEND    :   beginflag_b <= 1'b0 ;flag_R_S <= 1'b0 ;end default :   beginflag_b <= 1'b0 ;flag_R_S <= 1'b0 ;end endcase end// reg                 flagBreg  ;// reg                 flag_RSr  ;always @(posedge sys_clk or negedge sys_rst_n) beginif(~sys_rst_n)flagBreg <= 1'b0 ;else flagBreg <= flag_b ;endalways @(posedge sys_clk or negedge sys_rst_n) beginif(~sys_rst_n)flag_RSr <= 1'b0 ;else flag_RSr <= flag_R_S ;end// reg     [7:0]       datInFifo ; // data_in_fifoalways @(posedge sys_clk or negedge sys_rst_n) beginif(~sys_rst_n) datInFifo <= 1'b0 ;else if(flag_data)datInFifo <= {miso,datInFifo[7:1]}; // 读flash中数据,先传的低位。else datInFifo <= datInFifo ;end// reg                 flag_data ; // flag_data 采样标志信号always @(posedge sys_clk or negedge sys_rst_n) beginif(~sys_rst_n)flag_data <= 1'b0 ;else if(state_c == READ) beginif(cnt_20_ns && !sck)flag_data <= 1'b1 ;else flag_data <= 1'b0 ;end else beginflag_data <= 1'b0 ;endend// reg                 flaInFifo ; // flag_in_fifoalways @(posedge sys_clk or negedge sys_rst_n) beginif(~sys_rst_n)flaInFifo <= 1'b0 ;else if(state_c == READ && cnt_bit == 7 && flag_data)flaInFifo <= 1'b1 ;else flaInFifo <= 1'b0 ;end// reg     [19:0]      cnt_send  ; // uart_tx模块发送1byte数据的等待时间。always @(posedge sys_clk or negedge sys_rst_n) beginif(~sys_rst_n) cnt_send <= 20'd0 ;else if(state_c == SEND) beginif(cnt_send == CNT_MAX_SEND - 1) cnt_send <= 20'd0 ;else cnt_send <= cnt_send + 1'b1 ;endelse cnt_send <= 20'd0 ;end//     reg                 flag_out_fifo_reg ;always @(posedge sys_clk or negedge sys_rst_n) beginif(~sys_rst_n)flag_out_fifo_reg <= 1'b0 ;else if(flaSenEnd && !empty)flag_out_fifo_reg <= 1'b1 ;else flag_out_fifo_reg <= 1'b0 ;end//     reg                 flaSenEnd ;always @(posedge sys_clk or negedge sys_rst_n) beginif(~sys_rst_n) flaSenEnd <= 1'b0 ;else if(cnt_send == CNT_MAX_SEND - 2)flaSenEnd <= 1'b1 ;else flaSenEnd <= 1'b0 ;end// output signal describe// cs_n        ,always @(posedge sys_clk or negedge sys_rst_n) beginif(~sys_rst_n)cs_n <= 1'b1 ;else case (state_c)IDLE    :   if(key_flag)cs_n <= 1'b0 ;else cs_n <= cs_n ;INSTRUCT:   cs_n <= cs_n ;READ    :   cs_n <= cs_n ;SEND    :   cs_n <= 1'b1 ;default :   cs_n <= 1'b1 ;endcaseend// sck         ,always @(posedge sys_clk or negedge sys_rst_n) beginif(~sys_rst_n) sck <= 1'b0 ;else case (state_c)IDLE    :   sck <= 1'b0 ; INSTRUCT:   if(cnt_20_ns)sck <= ~sck ;else sck <= sck  ;READ    :   if(cnt_20_ns)sck <= ~sck ;else sck <=  sck ;SEND    :   sck <= 1'b0 ; default :   sck <= 1'b0 ; endcaseend// mosi        ,always @(posedge sys_clk or negedge sys_rst_n) beginif(~sys_rst_n) beginmosi <= 1'b0 ;end else begincase (state_c)IDLE    :   mosi <= 1'b0 ;INSTRUCT:   case (cnt_byte)0   :   if(cnt_bit == 0)mosi <= COMD_REA[7] ;else if(cnt_20_ns && sck)mosi <= COMD_REA[7 - cnt_bit] ;else mosi <= mosi ;1   :   if(cnt_bit == 0)mosi <= ADDR_SEC[7] ;else if(cnt_20_ns && sck)mosi <= ADDR_SEC[7 - cnt_bit] ;else mosi <= mosi ;2   :   if(cnt_bit == 0)mosi <= ADDR_PAG[7] ;else if(cnt_20_ns && sck)mosi <= ADDR_PAG[7 - cnt_bit] ;else mosi <= mosi ;3   :   if(cnt_bit == 0)mosi <= ADDR_BYT[7] ;else if(cnt_20_ns && sck)mosi <= ADDR_BYT[7 - cnt_bit] ;else mosi <= mosi ;default :   mosi <= 1'b0 ;endcaseREAD    :   mosi <= 1'b0 ;SEND    :   mosi <= 1'b0 ;default :   mosi <= 1'b0 ;endcaseendend// po_flag     ,always @(posedge sys_clk or negedge sys_rst_n) beginif(~sys_rst_n)po_flag <= 1'b0 ;else po_flag <= flag_out_fifo_reg ;end// wire     [7:0]    po_data ;// 直接连接到fifo的输出端口。     // */
/***********************例化FIFO***************************************/assign flaOutFif = flag_out_fifo_reg ;
fifo_1024x8 fifo_1024x8_inst(.clock              ( sys_clk   ) ,.data               ( datInFifo ) ,.rdreq              ( flaOutFif ) ,.wrreq              ( flaInFifo ) ,.empty              ( empty     ) ,.full               ( full      ) ,.q                  ( po_data   ) ,.usedw              ( usedw     )
);endmodule
module top (input       wire            sys_clk   ,input       wire            sys_rst_n ,input       wire            key_in    ,input       wire            miso      ,output      wire            cs_n      ,output      wire            sck       ,output      wire            mosi      ,output      wire            tx        
);// 例化间连线wire            key_flag ;wire            po_flag  ;wire    [7:0]   po_data  ;key_filter key_filter_isnt(.sys_clk                ( sys_clk    ) ,.sys_rst_n              ( sys_rst_n  ) ,.key_in                 ( key_in     ) ,.key_out                ( key_flag   )  
);spi spi_inst(.sys_clk                ( sys_clk   ) ,.sys_rst_n              ( sys_rst_n ) ,.key_flag               ( key_flag  ) ,.miso                   ( miso      ) , .cs_n                   ( cs_n      ) ,.sck                    ( sck       ) ,.mosi                   ( mosi      ) ,.po_flag                ( po_flag   ) ,.po_data                ( po_data   ) 
);uart_tx uart_tx_isnt(.sys_clk                ( sys_clk   ) ,.sys_rst_n              ( sys_rst_n ) ,.pi_flag                ( po_flag   ) ,.pi_data                ( po_data   ) ,.tx                     ( tx        )
);endmodule

 

module key_filter
#(parameter MAX_CNT_20MS = 20'd100_0000 
)(input           wire    sys_clk     ,input           wire    sys_rst_n   ,input           wire    key_in      ,output          wire    key_out        
);reg     key_r_0 ;reg     key_r_1 ;wire    nege    ;wire    pose    ;reg     [19:00]     cnt_20ms     ;wire                add_cnt_20ms ;wire                end_cnt_20ms ;reg                 add_cnt_flag ;// key_r_0 key_r_1 always @(posedge sys_clk or negedge sys_rst_n) beginif(~sys_rst_n) beginkey_r_0 <= 1'b1 ;end else beginkey_r_0 <= key_in ;endendalways @(posedge sys_clk or negedge sys_rst_n) beginif(~sys_rst_n) beginkey_r_1 <= 1'b1 ;end else beginkey_r_1 <= key_r_0 ;endend// nege poseassign nege = ~key_r_0 &&  key_r_1 ;assign pose =  key_r_0 && ~key_r_1 ;// add_cnt_flagalways @(posedge sys_clk or negedge sys_rst_n) beginif(~sys_rst_n) beginadd_cnt_flag <= 1'b0 ;end else beginif(nege) beginadd_cnt_flag <= 1'b1 ;end else beginif( pose || end_cnt_20ms ) beginadd_cnt_flag <= 1'b0 ;end else beginadd_cnt_flag <= add_cnt_flag ;endend endend// cnt_20ms add_cnt_20ms end_cnt_20msalways @(posedge sys_clk or negedge sys_rst_n) beginif(~sys_rst_n) begincnt_20ms <= 20'd0 ;end else beginif(add_cnt_20ms) beginif(end_cnt_20ms) begincnt_20ms <= 20'd0 ;end else begincnt_20ms <= cnt_20ms + 20'd1 ;endend else begincnt_20ms <= 20'd0 ;endendendassign add_cnt_20ms = add_cnt_flag ;assign end_cnt_20ms = add_cnt_20ms && cnt_20ms == ( MAX_CNT_20MS - 1'b1 ) ;// key_out// always @(posedge sys_clk or negedge sys_rst_n) begin// // always @(*) begin // 这样的话 会综合成 数据选择器//     if(~sys_rst_n) begin//         key_out <= 1'b0 ;//     end else begin//         if(end_cnt_20ms) begin//             key_out <= 1'b1 ;//         end else begin//             key_out <= 1'b0 ;//         end//     end// endassign key_out = end_cnt_20ms ;
endmodule

 

module uart_tx (input       wire            sys_clk     ,input       wire            sys_rst_n   ,input       wire            pi_flag     ,input       wire    [7:0]   pi_data     ,output      reg             tx          
);// parameterparameter   SUB_1K   = 1000           , // 缩减第十位,空闲位的时间。CLK_UART = 50_000_000     ,BPS      = 9600           ;localparam  MAX_BPS  = CLK_UART / BPS ;// reg signal definereg             pi_flag_reg1 ;reg     [ 7:0]  pi_data_reg1 ;reg             work_en      ;reg     [12:0]  cnt_bps      ;reg     [ 3:0]  cnt_bit      ;reg             bit_flag     ;/**********************************************/// reg             pi_flag_reg1 ;always @(posedge sys_clk or negedge sys_rst_n) beginif(~sys_rst_n)pi_flag_reg1 <= 1'b0 ;else pi_flag_reg1 <= pi_flag ;end// reg             pi_data_reg1 ;always @(posedge sys_clk or negedge sys_rst_n) beginif(~sys_rst_n)pi_data_reg1 <= 8'd0 ;else pi_data_reg1 <= pi_data ;end// reg             work_en      ;always @(posedge sys_clk or negedge sys_rst_n) beginif(~sys_rst_n) work_en <= 1'b0 ;else if(((cnt_bit == 4'd0) && pi_flag_reg1) || (cnt_bit == 4'd9) && (bit_flag))work_en <= ~work_en ;else work_en <= work_en ;end// reg     [12:0]  cnt_bps      ;always @(posedge sys_clk or negedge sys_rst_n) beginif(~sys_rst_n)cnt_bps <= 13'd0 ;else if(work_en && cnt_bps == MAX_BPS - 1) // 波特率计数器计数到最大值。cnt_bps <= 13'd0 ;else if(work_en)cnt_bps <= cnt_bps + 1'b1 ;else cnt_bps <= 13'd0 ;end// reg             bit_flag     ;always @(posedge sys_clk or negedge sys_rst_n) beginif(~sys_rst_n)bit_flag <= 1'b0 ;else if((work_en && cnt_bps == MAX_BPS - 1) || (work_en && cnt_bps == MAX_BPS - SUB_1K && cnt_bit == 9))bit_flag <= 1'b1 ;else bit_flag <= 1'b0 ;end// reg     [ 3:0]  cnt_bit      ;always @(posedge sys_clk or negedge sys_rst_n) beginif(~sys_rst_n)cnt_bit <= 4'd0 ;else if(work_en && bit_flag && cnt_bit == 4'd9) // 传递完第十位,位计数器要归零。cnt_bit <= 4'd0 ;else if(work_en && bit_flag)cnt_bit <= cnt_bit + 1'b1 ;else if(work_en)cnt_bit <= cnt_bit ;else cnt_bit <= 4'd0 ;end/****************************************/// output signal// txalways @(posedge sys_clk or negedge sys_rst_n) beginif(~sys_rst_n) tx <= 1'b1 ;else if(work_en) begincase (cnt_bit)0  : tx <= 1'b0 ;1  : tx <= pi_data_reg1[0] ; // 先发最低位。2  : tx <= pi_data_reg1[1] ;3  : tx <= pi_data_reg1[2] ;4  : tx <= pi_data_reg1[3] ;5  : tx <= pi_data_reg1[4] ;6  : tx <= pi_data_reg1[5] ;7  : tx <= pi_data_reg1[6] ;8  : tx <= pi_data_reg1[7] ;9  : tx <= 1'b1 ;default: tx <= 1'b1 ;endcase   end else begintx <= 1'b1 ;endend
endmodule

 

`timescale 1ns/1nsmodule  test_spi();reg             sys_clk     ;reg             sys_rst_n   ;reg             key_flag    ;wire            miso        ;wire            cs_n        ;wire            sck         ;wire            mosi        ;wire            po_flag     ;wire    [7:0]   po_data     ;defparam memory.mem_access.initfile = "initmemory.txt"; defparam spi_inst.CNT_MAX_SEND = 100 ;m25p16 memory (.c          ( sck      ) , .data_in    ( mosi     ) , .s          ( cs_n     ) , .w          ( 1'b1     ) , .hold       ( 1'b1     ) , .data_out   ( miso     )
);
spi spi_inst(.sys_clk                ( sys_clk   ) ,.sys_rst_n              ( sys_rst_n ) ,.key_flag               ( key_flag  ) ,.miso                   ( miso      ) ,.cs_n                   ( cs_n      ) ,.sck                    ( sck       ) ,.mosi                   ( mosi      ) ,.po_flag                ( po_flag   ) ,.po_data                ( po_data   ) 
);parameter   CYCLE = 20 ;initial beginsys_clk     = 1'b1  ;sys_rst_n  <= 1'b0  ;key_flag   <= 1'b0  ;#(CYCLE)            ;sys_rst_n  <= 1'b1  ;#(CYCLE*10)         ;#(CYCLE * 100)      ;key_flag   <= 1'b1  ;#(CYCLE)            ;key_flag   <= 1'b0  ;endalways #(CYCLE/2) sys_clk = ~sys_clk ;endmodule

 仿真波形:

上版验证通过。 

相关文章:

FPGA project : flash_read

实验目标&#xff1a; flash的普通读指令&#xff0c;在指定地址开始读。可以更改地址与读的数据个数。 先发送读指令扇区地址页地址字节地址。 然后读数据。再把读到的串行数据转化为8bit的数据&#xff0c;存入fifo。 然后读出FIFO中数据&#xff0c;通过uart_tx模块发送…...

nnunetv2训练报错 ValueError: mmap length is greater than file size

目录 报错解决办法 报错 笔者在使用 nnunetv2 进行 KiTS19肾脏肿瘤分割实验的训练步骤中 使用 2d 和3d_lowres 训练都没有问题 nnUNetv2_train 40 2d 0nnUNetv2_train 40 3d_lowres 0但是使用 3d_cascade_fullres 和 3d_fullres 训练 nnUNetv2_train 40 3d_cascade_fullres …...

React知识点系列(2)-每天10个小知识

目录 1. 如何优化 React 应用的性能&#xff1f;你用过哪些性能分析工具&#xff1f;2. 在 React 中&#xff0c;什么是 Context API&#xff1f;你在什么场景下会使用它&#xff1f;3. 你能解释一下什么是 React Fiber 吗&#xff1f;4. 在项目中&#xff0c;你是否使用过 Rea…...

AutoGPT:让 AI 帮你完成任务事情 | 开源日报 No.54

Significant-Gravitas/AutoGPT Stars: 150.4k License: MIT AutoGPT 是开源 AI 代理生态系统的核心工具包。它采用模块化和可扩展的框架&#xff0c;使您能够专注于以下方面&#xff1a; 构建 - 为惊人之作打下基础。测试 - 将您的代理调整到完美状态。查看 - 观察进展成果呈…...

USB 转串口芯片 CH340

目录 1、概述 2、特点 3、封装 4、引脚 6、参数 6.1 绝对最大值&#xff08;临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏&#xff09; 6.2 电气参数&#xff08;测试条件&#xff1a;TA25℃&#xff0c;VCC5V&#xff0c;不包括连接 USB 总线的引脚&…...

Day 05 python学习笔记

循环 应用&#xff1a;循环轮播图 最基础、最核心 循环&#xff1a;周而复始&#xff0c;谓之循环 (为了代码尽量不要重复) while循环 while的格式 索引定义 while 表达式&#xff08;只要结果为布尔值即可&#xff09;&#xff1a; 循环体 通过条件的不断变化&#xff0c;从…...

Python如何17行代码画一个爱心

&#x1f308;write in front&#x1f308; &#x1f9f8;大家好&#xff0c;我是Aileen&#x1f9f8;.希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流. &#x1f194;本文由Aileen_0v0&#x1f9f8; 原创 CSDN首发&#x1f412; 如…...

生产环境中常用Linux命令

太简单的我就不讲解啦,浪费时间,直接将生产中常用的 文章目录 1.总纲2.整机 top3.CPU vmstat3. 内存 free4. 硬盘: df5. 磁盘IO iostat6. 网络IO ifstat7: 内存过高的情景排查 1.总纲 整机:topcpu:vmstat内存:free硬盘:df磁盘io: iostat网络io:ifstat 2.整机 top 首先们要查…...

【使用 TensorFlow 2】03/3 创建自定义损失函数

一、说明 TensorFlow 2发布已经接近5年时间&#xff0c;不仅继承了Keras快速上手和易于使用的特性&#xff0c;同时还扩展了原有Keras所不支持的分布式训练的特性。3大设计原则&#xff1a;简化概念&#xff0c;海纳百川&#xff0c;构建生态.这是本系列的第三部分&#xff0c;…...

Vue3中使用v-model高级用法参数绑定传值

Vue3中使用v-model高级用法参数绑定传值 单个输入框传值多个输入框传值,一个组件接受多个v-model值 单个输入框传值 App.vue <template><p>{{firstName}}</p><hello-world v-model"firstName"></hello-world> </template><…...

你的工作中,chatGPT可以帮你做什么?

如何在工作中使用 ChatGPT 的 10 种实用方法 现在您已经知道如何开始使用 ChatGPT 并了解其基本功能&#xff08;提示 -> 响应&#xff09;&#xff0c;让我们探讨如何使用它来大幅提高工作效率。 1. 总结报告、会议记录等 ChatGPT可以快速分析大文本并识别关键点。例如&a…...

k8s简单部署nginx

文章目录 1. 前言2. 部署nginx2.1. **创建一个nginx的Deployment**2.2. **创建一个nginx的service** 3. 总结 1. 前言 前文提要&#xff1a; kubeadm简单搭建k8s集群第三方面板部署k8s 上篇文章我们简单部署了k8s的集群环境&#xff0c;相比一定迫不及待的想部署一个实际应用了…...

小黑子—MyBatis:第四章

MyBatis入门4.0 十 小黑子进行MyBatis参数处理10.1 单个简单类型参数10.1.1 单个参数Long类型10.1.2 单个参数Date类型 10.2 Map参数10.3 实体类参数&#xff08;POJO参数&#xff09;10.4 多参数10.5 Param注解&#xff08;命名参数&#xff09;10.6 Param注解源码分析 十一 小…...

Docker快速上手:使用Docker部署Drupal并实现公网访问

文章目录 前言1. Docker安装Drupal2. 本地局域网访问3 . Linux 安装cpolar4. 配置Drupal公网访问地址5. 公网远程访问Drupal6. 固定Drupal 公网地址 前言 Dupal是一个强大的CMS&#xff0c;适用于各种不同的网站项目&#xff0c;从小型个人博客到大型企业级门户网站。它的学习…...

React知识点系列(1)-每天10个小知识

目录 1.什么是 React&#xff0c;以及它在前端开发中的优势是什么&#xff1f;2.你是如何组织和管理 React 组件的&#xff1f;3.你能解释一下 React 的生命周期方法吗&#xff1f;你通常在哪个生命周期方法中发起网络请求&#xff1f;4.什么是 React Hooks&#xff1f;你常用哪…...

substring 和 substr 的区别

1、结论 两个方法都用于截取字符串&#xff0c;其用法不同&#xff1a; 1&#xff09;相同点&#xff1a; ① 都用于截取字符串&#xff1b; ② 第一个参数都是表示提取字符的开始索引位置&#xff1b; 2&#xff09;不同点&#xff1a; ① 第一个参数的取值范围不同&…...

产品经理的工作职责是什么?

产品经理的工作职责主要包括以下几个方面&#xff1a; 1. 产品策划与定义&#xff1a;产品经理负责制定产品的整体策略和规划&#xff0c;包括产品定位、目标用户、市场需求分析等。他们需要与团队合作&#xff0c;定义产品的功能和特性&#xff0c;明确产品的核心竞争力和差异…...

智能井盖传感器:提升城市安全与便利的利器

在智能化城市建设的浪潮中&#xff0c;WITBEE万宾智能井盖传感器&#xff0c;正以其卓越的性能和创新的科技&#xff0c;吸引着越来越多的关注。本文小编将为大家详细介绍这款产品的独特优势和广阔应用前景。 在我们生活的城市中&#xff0c;井盖可能是一个最不起眼的存在。然而…...

给你一个项目,你将如何开展性能测试工作?

一、性能三连问 1、何时进行性能测试&#xff1f; 性能测试的工作是基于系统功能已经完备或者已经趋于完备之上的&#xff0c;在功能还不够完备的情况下没有多大的意义。因为后期功能完善上会对系统的性能有影响&#xff0c;过早进入性能测试会出现测试结果不准确、浪费测试资…...

点燃市场热情,让产品风靡全球——实用推广策略大揭秘!

文章目录 一、实用推广策略的重要性1. 提高产品知名度和认可度2. 拓展产品市场和用户群体3. 增强企业品牌形象和市场竞争力 二、实用推广策略的种类1. 社交媒体推广2. 定向推广3. 口碑营销4. 内容推广 三、实用推广策略的实施步骤1. 研究目标用户和市场需求&#xff0c;明确产品…...

Python操作Hive数据仓库

Python连接Hive 1、Python如何连接Hive&#xff1f;2、Python连接Hive数据仓库 1、Python如何连接Hive&#xff1f; Python连接Hive需要使用Impala查询引擎 由于Hadoop集群节点间使用RPC通信&#xff0c;所以需要配置Thrift依赖环境 Thrift是一个轻量级、跨语言的RPC框架&…...

客户收到报价后突然安静了,怎么办?

外贸人常常会有这样的经历&#xff1a;与意向度很高的客户数封邮件沟通报价之后&#xff0c;突然客户那边就沉静下来了&#xff0c;而不知所措&#xff0c;遇到这样的客户&#xff0c;应该怎么办呢&#xff1f; Vol.1 了解客户信息 首先自身要养成一个好习惯&#xff0c;针对…...

O2OA(翱途)常见知识之 mysql 数据库备份

概述 系统运行一段时间后&#xff0c;可能发生各种情况导致数据丢失&#xff0c;如硬件故障、人为错误、软件错误、病毒攻击等。定期备份可以帮助您保护数据免受这些风险的影响&#xff0c;以便在需要时能够恢复数据。 O2OA应用本身可以通过dump配置每天自定备份数据&#xff…...

如何让你的程序支持lua脚本

最近做了一个控制机械臂的程序,使用C语言开发的,调试的时候总是需要修改代码来调整运动轨迹, 总是要编译,实在烦人 不过有个方法就是使用lua来调试运动逻辑 代码如下 static int lua_up(lua_State*l) {size_t stepluaL_checkinteger(l,1);//向上动作up(step);return 0; }st…...

什么是系统架构师?什么是系统架构?

1. 什么是系统架构师&#xff1f; 系统架构设计师(System Architecture Designer&#xff09;是项目开发活动中的关键角色之一。系统架构是系统的一种整体的高层次的结构表示&#xff0c;是系统的骨架和根基&#xff0c;其决定了系统的健壮性和生命周期的长短。 系统架构设计…...

大数据NoSQL数据库HBase集群部署

目录 1. 简介 2. 安装 1. HBase依赖Zookeeper、JDK、Hadoop&#xff08;HDFS&#xff09;&#xff0c;请确保已经完成前面 2. 【node1执行】下载HBase安装包 3. 【node1执行】&#xff0c;修改配置文件&#xff0c;修改conf/hbase-env.sh文件 4. 【node1执行】&#xf…...

百乐钢笔维修(官方售后,全流程)

文章目录 1 背景2 方法3 结果 1 背景 在给钢笔上墨的途中&#xff0c;不小心总成掉地上了&#xff0c;把笔尖摔弯了&#xff08;虽然还可以写字&#xff0c;但是非常的挂纸&#xff09;&#xff0c;笔身没有什么问题&#xff0c;就想着维修一下笔尖或者替换一下总成。 一般维…...

Redis 介绍安装

数据库 关系型数据库 关系型数据库是一个结构化的数据库&#xff0c;创建在关系模型&#xff08;二维表格模型&#xff09;基础上&#xff0c;一般面向于记录。 SQL 语句&#xff08;标准数据查询语言&#xff09;就是一种基于关系型数据库的语言&#xff0c;用于执行对关系型…...

MyCat管理及监控

MyCat原理 在 MyCat 中&#xff0c;当执行一条 SQL 语句时&#xff0c; MyCat 需要进行 SQL 解析、分片分析、路由分析、读写分离分析等操作&#xff0c;最终经过一系列的分析决定将当前的SQL 语句到底路由到那几个 ( 或哪一个 ) 节点数据库&#xff0c;数据库将数据执行完毕后…...

滑动窗口算法题

更新结果 1、判断条件成立后更新结果 2、入窗口后即可更新结果 判断&#xff1a; 出窗口后状态更新&#xff0c;循环回去再判断。 1、长度最小的子数组 力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台...