当前位置: 首页 > news >正文

[NSSCTF 2nd]Math

原题py:

from secret import flag
from Crypto.Util.number import *
import gmpy2length = len(flag)
flag1 = flag[:length//2]
flag2 = flag[length//2:]
e = 65537m1 = bytes_to_long(flag1)
p = getPrime(512)
q = getPrime(512)
n = p*q
phi = (p-1)*(q-1)
d = gmpy2.invert(e,phi)p1 = gmpy2.invert(p,q)
q1 = gmpy2.invert(q,p)
c = pow(m1,e,n)print("p1=",p1)
print("q1=",q1)
print("c=",c)
print("phi=",phi)"""
p1= 3020925936342826638134751865559091272992166887636010673949262570355319420768006254977586056820075450411872960532347149926398408063119965574618417289548987
q1= 4671408431692232396906683283409818749720996872112784059065890300436550189441120696235427299344866325968178729053396743472242000658751114391777274910146291
c= 25112054943247897935419483097872905208058812866572413543619256987820739973912338143408907736140292730221716259826494247791605665059462509978370784276523708331832947651238752021415405546380682507724076832547566130498713598421615793975775973104012856974241202142929158494480919115138145558312814378701754511483
phi= 57503658815924732796927268512359220093654065782651166474086873213897562591669139461637657743218269483127368502067086834142943722633173824328770582751298229218384634668803018140064093913557812104300156596305487698041934061627496715082394633864043543838906900101637618600513874001567624343801197495058260716932
"""m2 = bytes_to_long(flag2)
p = getPrime(1024)
q = getPrime(1024)
n = p * q
c = pow(m2, e, n)
hint = pow(2023 * p + 114514, q, n)
print("n=",n)
print("c=",c)
print("hint=",hint)"""
n= 12775720506835890504634034278254395430943267336816473660983646973423280986156683988190224391394224069040565587173690009193979401332176772774003070053150665425296356891182224095151626957780349726980433545162004592720236315207871365869074491602494662741551613634958123374477023452496165047922053316939727488269523121920612595228860205356006298829652664878874947173274376497334009997867175453728857230796230189708744624237537460795795419731996104364946593492505600336294206922224497794285687308908233911851722675754289376914626682400586422368439122244417279745706732355332295177737063024381192630487607768783465981451061
c= 11915755246503584850391275332434803210208427722294114071001100308626307947436200730224125480063437044802693983505018296915205479746420176594816835977233647903359581826758195341201097246092133133080060014734506394659931221663322724002898147351352947871411658624516142945817233952310735792476179959957816923241946083918670905682025431311942375276709386415064702578261223172000098847340935816693603778431506315238612938066215726795441606532661443096921685386088202968978123769780506210313106183173960388498229061590976260661410212374609180449458118176113016257713595435899800372393071369403114116302366178240855961673903
hint= 3780943720055765163478806027243965253559007912583544143299490993337790800685861348603846579733509246734554644847248999634328337059584874553568080801619380770056010428956589779410205977076728450941189508972291059502282197067064652703679207594494311426932070873126291964667101759741689303119878339091991064473009603015444698156763131697516348762529243379294719509271792197450290763350043267150173332933064667716343268081089911389405010661267902446894363575630871542572200564687271311946580866369204751787686029541644463829030926902617740142434884740791338666415524172057644794094577876577760376741447161098006698524808
"""

 审计代码:

此题分为两个部分,第一部分是一道告知我们p1 = gmpy2.invert(p,q)、q1 = gmpy2.invert(q,p)、c、phi四个条件,需要我们求出p和q的值,即可使用传统的rsa将未知的m分解的部分;

求解思路如下:

详细资料可参考:

https://github.com/pcw109550/write-up/tree/master/2019/HITCON/Lost_Modulus_Again

p1 = gmpy2.invert(p,q)

q1 = gmpy2.invert(q,p)

=>

p1*p = 1 + k1*q

q1*q = 1 + k2*p

=>相减

p*(p1 + k2) = q*(q1 + k1)

由于p和q都是素数,所以(p1 + k2) 必然整除q,(q1 + k1)必然整除p,将p、q用这两个值代替

phi(n) = (p-1)*(q-1) = p*q - (p+q) + 1

=>

phi(n) = (q1 + k1 - 1)*(p1 + k2 - 1)

=(q1 - 1) * (p1 - 1) + (q1 - 1) * k1 + (p1 - 1) * k2 + k1 * k2

=>

phi(n) = q1 * p1 - 1 + (p1 - 1) * (q1 * p1 - 1) / k1 + k1 * (q1 - 1) + (q1 - 1) * (p1 - 1)
# quadratic equation f(k1) = 0
(q1 - 1) * k1 ** 2 + (q1 * p1 - 1 - phi(n) + (q1 - 1) * (p1 - 1)) * k1 + (p1 - 1) * (q1 * p1 - 1) = 0

此时我们便可以建立一个以k1为系数的一元二次方程求解:

solve:

x = 3020925936342826638134751865559091272992166887636010673949262570355319420768006254977586056820075450411872960532347149926398408063119965574618417289548987
y = 4671408431692232396906683283409818749720996872112784059065890300436550189441120696235427299344866325968178729053396743472242000658751114391777274910146291
ct = 25112054943247897935419483097872905208058812866572413543619256987820739973912338143408907736140292730221716259826494247791605665059462509978370784276523708331832947651238752021415405546380682507724076832547566130498713598421615793975775973104012856974241202142929158494480919115138145558312814378701754511483
phi = 57503658815924732796927268512359220093654065782651166474086873213897562591669139461637657743218269483127368502067086834142943722633173824328770582751298229218384634668803018140064093913557812104300156596305487698041934061627496715082394633864043543838906900101637618600513874001567624343801197495058260716932from Crypto.Util.number import *
import gmpy2
e = 65537
d = inverse(e,phi)def solve(a, b, c):D = b ** 2 - 4 * a * c# assert gmpy2.is_square(D)x1 = (-b + gmpy2.isqrt(D)) // (2 * a)x2 = (-b - gmpy2.isqrt(D)) // (2 * a)return x1, x2a = x - 1
b = x * y - 1 + (x - 1) * (y - 1) - phi
c = (y - 1) * (x * y - 1)
k1, k2 = solve(a, b, c)
if (x * y - 1) % k1 == 0:k2 = (x * y - 1) // k1
elif (x * y - 1) % k2 == 0:k1, k2 = k2, (x * y - 1) // k2
else:assert Falsep, q = x + k2, y + k1
N = p * q
flag1 = long_to_bytes(pow(ct, d, N)).strip()
print(flag1)

第二部分则是相似推导:

原题py:

m2 = bytes_to_long(flag2)
p = getPrime(1024)
q = getPrime(1024)
n = p * q
c = pow(m2, e, n)
hint = pow(2023 * p + 114514, q, n)
print("n=",n)
print("c=",c)
print("hint=",hint)"""
n= 12775720506835890504634034278254395430943267336816473660983646973423280986156683988190224391394224069040565587173690009193979401332176772774003070053150665425296356891182224095151626957780349726980433545162004592720236315207871365869074491602494662741551613634958123374477023452496165047922053316939727488269523121920612595228860205356006298829652664878874947173274376497334009997867175453728857230796230189708744624237537460795795419731996104364946593492505600336294206922224497794285687308908233911851722675754289376914626682400586422368439122244417279745706732355332295177737063024381192630487607768783465981451061
c= 11915755246503584850391275332434803210208427722294114071001100308626307947436200730224125480063437044802693983505018296915205479746420176594816835977233647903359581826758195341201097246092133133080060014734506394659931221663322724002898147351352947871411658624516142945817233952310735792476179959957816923241946083918670905682025431311942375276709386415064702578261223172000098847340935816693603778431506315238612938066215726795441606532661443096921685386088202968978123769780506210313106183173960388498229061590976260661410212374609180449458118176113016257713595435899800372393071369403114116302366178240855961673903
hint= 3780943720055765163478806027243965253559007912583544143299490993337790800685861348603846579733509246734554644847248999634328337059584874553568080801619380770056010428956589779410205977076728450941189508972291059502282197067064652703679207594494311426932070873126291964667101759741689303119878339091991064473009603015444698156763131697516348762529243379294719509271792197450290763350043267150173332933064667716343268081089911389405010661267902446894363575630871542572200564687271311946580866369204751787686029541644463829030926902617740142434884740791338666415524172057644794094577876577760376741447161098006698524808
"""

hint = pow(2023 * p + 114514, q, n)

=>

hint = (2023 * p + 114514)^q mod p

hint = 114514^q + k1 * p

114514^q = hint - k1*p

(114514^q)^p = (hint - k1*p)^p

114514^n = p*(.....) + hint^p

=>

114514^n = hint^p mod p = hint

所以 114514^n - hint^p,必然是p的倍数,p和q便可以求出。

solve:

nn = 12775720506835890504634034278254395430943267336816473660983646973423280986156683988190224391394224069040565587173690009193979401332176772774003070053150665425296356891182224095151626957780349726980433545162004592720236315207871365869074491602494662741551613634958123374477023452496165047922053316939727488269523121920612595228860205356006298829652664878874947173274376497334009997867175453728857230796230189708744624237537460795795419731996104364946593492505600336294206922224497794285687308908233911851722675754289376914626682400586422368439122244417279745706732355332295177737063024381192630487607768783465981451061
cc = 11915755246503584850391275332434803210208427722294114071001100308626307947436200730224125480063437044802693983505018296915205479746420176594816835977233647903359581826758195341201097246092133133080060014734506394659931221663322724002898147351352947871411658624516142945817233952310735792476179959957816923241946083918670905682025431311942375276709386415064702578261223172000098847340935816693603778431506315238612938066215726795441606532661443096921685386088202968978123769780506210313106183173960388498229061590976260661410212374609180449458118176113016257713595435899800372393071369403114116302366178240855961673903
hint = 3780943720055765163478806027243965253559007912583544143299490993337790800685861348603846579733509246734554644847248999634328337059584874553568080801619380770056010428956589779410205977076728450941189508972291059502282197067064652703679207594494311426932070873126291964667101759741689303119878339091991064473009603015444698156763131697516348762529243379294719509271792197450290763350043267150173332933064667716343268081089911389405010661267902446894363575630871542572200564687271311946580866369204751787686029541644463829030926902617740142434884740791338666415524172057644794094577876577760376741447161098006698524808p = GCD(pow(114514,nn,nn) - hint,nn)
q = nn//p
D = inverse(e,(p-1)*(q-1))
flag2 = long_to_bytes(pow(cc,D,nn))
print(flag2)

将两次求解得到的flag相加即可。

相关文章:

[NSSCTF 2nd]Math

原题py: from secret import flag from Crypto.Util.number import * import gmpy2length len(flag) flag1 flag[:length//2] flag2 flag[length//2:] e 65537m1 bytes_to_long(flag1) p getPrime(512) q getPrime(512) n p*q phi (p-1)*(q-1) d gmpy2.i…...

uml知识点学习

https://zhuanlan.zhihu.com/p/659911315https://zhuanlan.zhihu.com/p/659911315软件工程分析设计图库目录 - 知乎一、结构化绘图1. 结构化——数据流图Chilan Yuk:1. 结构化——数据流图2. 结构化——数据字典Chilan Yuk:2. 结构化——数据字典3. 结构…...

JAVA学习日记1——JAVA简介及第一个java程序

简单记忆 JAVA SE :标准版,核心基础 JAVA EE:企业版,进阶 JDK:Java Development Kit,Java开发工具包,包含JRE JRE:Java Runtime Environment,Java运行时环境&#xff…...

Linux命令(102)之less

linux命令之less 1.less介绍 linux命令less是一个文本文件查看工具,它以一种交互的方式,逐页地显示文本文件的内容,并且可以在文件中进行搜索等定位 2.less用法 less [参数] filename less参数 参数说明-N显示每行的行号-i忽略搜索时的大…...

vue多条件查询

<template><div><input type"text" v-model"keyword" placeholder"关键字"><select v-model"category"><option value"">所有分类</option><option v-for"cat in categories&q…...

c 语言基础:L1-038 新世界

这道超级简单的题目没有任何输入。 你只需要在第一行中输出程序员钦定名言“Hello World”&#xff0c;并且在第二行中输出更新版的“Hello New World”就可以了。 输入样例&#xff1a; 无输出样例&#xff1a; Hello World Hello New World 程序源码&#xff1a; #incl…...

计算机算法分析与设计(13)---贪心算法(多机调度问题)

文章目录 一、问题概述1.1 思路分析1.2 实例分析 二、代码编写 一、问题概述 1.1 思路分析 1. 设有 n n n 个独立的作业 1 , 2 , … , n {1, 2, …, n} 1,2,…,n&#xff0c;由 m m m 台相同的机器 M 1 , M 2 , … , M m {M_1, M_2, …, M_m} M1​,M2​,…,Mm​ 进行加工处…...

小程序canvas层级过高真机遮挡组件的解决办法

文章目录 问题发现真机调试问题分析问题解决改造代码效果展示 问题发现 在小程序开发中需要上传图片进行裁剪&#xff0c;在实际真机调试中发现canvas层遮挡住了生成图片的按钮。 问题代码 <import src"../we-cropper/we-cropper.wxml"></import> <…...

番外8.1 配置+管理文件系统

Task01: Linux 文件系统结构&#xff1b; 可以进行Linux操作系统的文件权限管理与方式切换&#xff0c;可以应用磁盘与文件权限管理工具&#xff1b; 01&#xff1a;常见文件系统类型&#xff08;Ext4[rhel6默认文件管理系统], 存储容量1 EB1073741824 GB; XFS[rhel 7/8默认的文…...

互联网Java工程师面试题·Java 总结篇·第八弹

目录 72、用 Java 的套接字编程实现一个多线程的回显&#xff08;echo&#xff09;服务器。 73、XML 文档定义有几种形式&#xff1f;它们之间有何本质区别&#xff1f;解析XML 文档有哪几种方式&#xff1f; 74、你在项目中哪些地方用到了 XML&#xff1f; 72、用 Java 的套…...

VSCode修改扩展和用户文件夹目录位置(Windows)

VSCode修改扩展和用户文件夹目录位置&#xff08;Windows&#xff09; 前言&#xff1a;方法前期准备&#xff1a;方法1&#xff08;强推荐&#xff09;方法2&#xff08;不太推荐&#xff09;方法3&#xff08;好麻烦&#xff0c;不太推荐&#xff09; 前言&#xff1a; VSCod…...

Spring 事务

文章目录 实现CURD&#xff08;没加入事务前&#xff09;1.加入依赖2.创建jdbc.properties3.配置Spring的配置文件4.数据库与测试表 基于注解的声明式事务准备工作测试模拟场景 加入事务①添加事务配置 Transactional注解标识的位置只读事务属性&#xff1a;超时事务属性&#…...

无法访问 github ,解决办法

一、使用代理&#xff08;首选&#xff09; 这种办法只需要更改github.com为代理的域名即可&#xff0c;使用方式与GitHub除了域名不同其他都一样&#xff0c;速度挺快&#xff0c;可登陆&#xff0c;可提交。 1、查看当前的代理&#xff1a; git config --global --get htt…...

SD卡与emmc的异同

eMMC与SD卡的异同&#xff1a; 物理尺寸和接口&#xff1a; eMMC&#xff1a;eMMC是一种嵌入式存储解决方案&#xff0c;通常采用BGA&#xff08;Ball Grid Array&#xff09;封装&#xff0c;焊接在电路板上。它没有标准的物理尺寸&#xff0c;而是以芯片的形式存在。SD卡&…...

机器学习笔记 - 3D 对象跟踪极简概述

一、简述 大多数对象跟踪应用程序都是 2D 的。但现实世界是 3D 的,无论您是跟踪汽车、人、直升机、导弹,还是进行增强现实,您都需要使用 3D。在 CVPR 2022(计算机视觉和模式识别)会议上,已经出现了大量3D目标检测论文。 二、什么是 3D 对象跟踪? 对象跟踪是指随着时间的…...

《机器学习----简单的分类器》第二章、朴素贝叶斯,项目:使用特征值给语句打标签

贝叶斯分类器 1,朴素贝叶斯算法1. 朴素贝叶斯算法、2. 算法思路3. 贝叶斯定理4.特征的选用的要求和处理 2&#xff0c;算法应用1 文本分类2 垃圾邮件过滤3 情感分析 3. 朴素贝叶斯的优缺点1. 优点2. 缺点 项目实践1&#xff0c;算法流程2&#xff0c;具体实现 1,朴素贝叶斯算法…...

01. 汇编LED驱动实验

01. 汇编LED驱动实验 汇编原理分析为什么要学习Cortex—A汇编STM32IO初始化流程IMX6UL初始化流程 汇编基础处理器内部数据传输指令存储器访问指令 编写驱动编译程序烧写bin文件 汇编原理分析 为什么要学习Cortex—A汇编 需要用汇编初始化一些SOC外设使用汇编初始化DDR&#x…...

Hadoop3教程(二十):MapReduce的工作机制总结

文章目录 &#xff08;109&#xff09;MapTask工作机制&#xff08;110&#xff09;ReduceTask工作机制&并行度ReduceTask工作机制MapTask和ReduceTask的并行度决定机制 &#xff08;122&#xff09;MapReduce开发总结参考文献 &#xff08;109&#xff09;MapTask工作机制…...

浅谈AI大模型技术:概念、发展和应用

AI大模型技术是指使用超大规模的深度学习模型来解决各种复杂的人工智能问题&#xff0c;如自然语言处理、计算机视觉、多模态交互等。AI大模型技术具有强大的学习能力和泛化能力&#xff0c;可以在多种任务上取得优异的性能&#xff0c;但也面临着计算、存储、通信等方面的挑战…...

【Leetcode】212.单词搜索II(Hard)

一、题目 1、题目描述 给定一个 m x n 二维字符网格 board 和一个单词(字符串)列表 words, 返回所有二维网格上的单词 。 单词必须按照字母顺序,通过 相邻的单元格 内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母在一个单词中…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载&#xff0c;仅供自学使用&#xff0c;侵权必究&#xff0c;如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

Selenium常用函数介绍

目录 一&#xff0c;元素定位 1.1 cssSeector 1.2 xpath 二&#xff0c;操作测试对象 三&#xff0c;窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四&#xff0c;弹窗 五&#xff0c;等待 六&#xff0c;导航 七&#xff0c;文件上传 …...

uniapp 实现腾讯云IM群文件上传下载功能

UniApp 集成腾讯云IM实现群文件上传下载功能全攻略 一、功能背景与技术选型 在团队协作场景中&#xff0c;群文件共享是核心需求之一。本文将介绍如何基于腾讯云IMCOS&#xff0c;在uniapp中实现&#xff1a; 群内文件上传/下载文件元数据管理下载进度追踪跨平台文件预览 二…...

Linux部署私有文件管理系统MinIO

最近需要用到一个文件管理服务&#xff0c;但是又不想花钱&#xff0c;所以就想着自己搭建一个&#xff0c;刚好我们用的一个开源框架已经集成了MinIO&#xff0c;所以就选了这个 我这边对文件服务性能要求不是太高&#xff0c;单机版就可以 安装非常简单&#xff0c;几个命令就…...

Monorepo架构: Nx Cloud 扩展能力与缓存加速

借助 Nx Cloud 实现项目协同与加速构建 1 &#xff09; 缓存工作原理分析 在了解了本地缓存和远程缓存之后&#xff0c;我们来探究缓存是如何工作的。以计算文件的哈希串为例&#xff0c;若后续运行任务时文件哈希串未变&#xff0c;系统会直接使用对应的输出和制品文件。 2 …...

webpack面试题

面试题&#xff1a;webpack介绍和简单使用 一、webpack&#xff08;模块化打包工具&#xff09;1. webpack是把项目当作一个整体&#xff0c;通过给定的一个主文件&#xff0c;webpack将从这个主文件开始找到你项目当中的所有依赖文件&#xff0c;使用loaders来处理它们&#x…...

20250609在荣品的PRO-RK3566开发板的Android13下解决串口可以执行命令但是脚本执行命令异常的问题

20250609在荣品的PRO-RK3566开发板的Android13下解决串口可以执行命令但是脚本执行命令异常的问题 2025/6/9 20:54 缘起&#xff0c;为了跨网段推流&#xff0c;千辛万苦配置好了网络参数。 但是命令iptables -t filter -F tetherctrl_FORWARD可以在调试串口/DEBUG口正确执行。…...

在MobaXterm 打开图形工具firefox

目录 1.安装 X 服务器软件 2.服务器端配置 3.客户端配置 4.安装并打开 Firefox 1.安装 X 服务器软件 Centos系统 # CentOS/RHEL 7 及之前&#xff08;YUM&#xff09; sudo yum install xorg-x11-server-Xorg xorg-x11-xinit xorg-x11-utils mesa-libEGL mesa-libGL mesa-…...

PCA笔记

✅ 问题本质&#xff1a;为什么让矩阵 TT 的行列式为 1&#xff1f; 这个问题通常出现在我们对数据做**线性变换&#xff08;旋转/缩放&#xff09;**的时候&#xff0c;比如在 PCA 中把数据从原始坐标系变换到主成分方向时。 &#x1f4cc; 回顾一下背景 在 PCA 中&#xff…...