保序回归与金融时序数据
保序回归在回归问题中的作用是通过拟合一个单调递增或递减的函数,来保持数据点的相对顺序特性。
一、保序回归的作用
主要用于以下情况:
1. 有序数据:当输入数据具有特定的顺序关系时,保序回归可以帮助保持这种顺序关系。例如,时间序列数据、评级数据或排序数据等。
2. 无噪声数据:如果数据中存在噪声,即一些离群点或错误标记的数据点,保序回归可能会受到这些异常值的干扰。因此,保序回归更适用于相对干净且有序的数据。
3. 数据平滑:保序回归可以用于平滑数据,消除数据中的波动和噪声,以获得更加稳定的趋势。
4. 非线性关系:当数据中存在非线性的关系时,保序回归可以更好地捕捉这种非线性关系,而不受线性回归的限制。
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.isotonic import IsotonicRegression# 构造示例数据
X = np.array([1, 2, 3, 4, 5]) # 自变量
y = np.array([2, 3, 1, 5, 4]) # 因变量# 创建并训练保序回归模型
model = IsotonicRegression()
model.fit(X, y)# 预测新的数据点
new_X = np.array([5, 6, 5.5])
predicted_y = model.predict(new_X)# 输出预测结果
print(predicted_y)
二、保序回归处理金融股票时序数据并可视化
data = {}
data['close'] = pd.read_pickle('close.pkl')['stock_1'].iloc[-500:]
data['open'] = pd.read_pickle('open.pkl')['stock_1'].iloc[-500:]n = len(data['close'])
X = np.array(data['open'].values)
y = data['close'].valuesfrom sklearn.isotonic import IsotonicRegressionir=IsotonicRegression()
y_ir=ir.fit_transform(X,y)plt.figure(figsize=(15,6))
plt.plot(X,y,'r.',markersize=12)
plt.plot(X,y_ir,'g.-',markersize=12)
plt.legend(('Data','Isotonic Fit'))
plt.title("Isotonic Regression")
plt.show()
三、一个小例子
-
收集了股票价格和动量因子的历史数据,其中 stock_prices 是股票价格的时间序列数据,momentum_factors 是相应的动量因子数据,target 是标记股票涨跌的目标变量。
-
创建一个 IsotonicRegression 对象 model,并使用 fit 方法拟合模型,将动量因子作为自变量,目标变量作为因变量进行训练。
-
定义了新的动量因子 new_momentum_factors,并使用 predict 方法对其进行预测,得到相应的股票涨跌预测结果 predicted_target。
# 收集股票价格和动量因子的历史数据
stock_prices = np.array([100, 110, 120, 130, 120, 110, 100])
momentum_factors = np.array([0.5, 0.7, 0.9, 1.2, 0.8, 0.6, 0.4])
target = np.array([1, 1, 1, -1, -1, -1, -1]) # 标记股票涨跌,1为涨,-1为跌# 创建并拟合保序回归模型
model = IsotonicRegression()
model.fit(momentum_factors, target)# 预测新的动量因子对应的股票涨跌
new_momentum_factors = np.array([0.5, 0.4, 0.7])
predicted_target = model.predict(new_momentum_factors)# 输出预测结果
print(predicted_target)
相关文章:

保序回归与金融时序数据
保序回归在回归问题中的作用是通过拟合一个单调递增或递减的函数,来保持数据点的相对顺序特性。 一、保序回归的作用 主要用于以下情况: 1. 有序数据:当输入数据具有特定的顺序关系时,保序回归可以帮助保持这种顺序关系。例如&…...

基于单片机设计的家用自来水水质监测装置
一、前言 本文介绍基于单片机设计的家用自来水水质监测装置。利用STM32F103ZET6作为主控芯片,结合水质传感器和ADC模块,实现对自来水水质的检测和监测功能。通过0.96寸OLED显示屏,将采集到的水质数据以直观的方式展示给用户。 随着人们对健…...

ubuntu20.04运用startup application开机自启动python程序
运用startup application开机自启动python程序。在终端中输入gnome-session-properties,如果显示没有则先进行安装,sudo apt-get update 和sudo apt install StartupApplications(根据显示提示安装)。在显示程序中搜索startup,打开应用程序。 在程序目录…...

SpringBoot整合Caffeine实现缓存
Caffeine Caffeine是一种基于Java的高性能缓存库,它提供了可配置、快速、灵活的缓存实现。Caffeine具有以下特点: 高性能:Caffeine使用了一些优化技术,如基于链表的并发哈希表和无锁算法,以提供卓越的读写性能。容量…...

DVWA-弱会话IDS
弱会话IDS Session简介: 用户登录后,在服务器就会创建一个会话(session),叫做会话控制,接着访问页面的时候就不用登录,只需要携带Session去访问即可。 sessionID作为特定用户访问站点所需要的唯一内容。如果能够计算…...

【C++中cin、cin.get()、cin.getline()、getline() 的区别】
文章目录 引入cin基本用法输入多个变量换行符存放在缓冲区中 cin.get()基本用法重载函数换行符残留在缓冲区中 cin.getline()基本使用重载函数换行符不会残留在缓冲区中 string 流中的 getline()总结用法总结几个输入实例输入格式输入格式输入格式输入格式 输出格式 写在最后 引…...

SSH连接华为交换机慢
ssh连接交换机慢是因为交换计算密钥算法阶段默认使用安全性更高的秘钥,由于性能问题导致连接比较慢,如一台华为S5735S-L24T4S-QA2的交换机默认使用如下秘钥,安全行由高到低。 ssh server key-exchange dh_group16_sha512 dh_group15_sha512 …...

Web攻防03_MySQL注入_数据请求
文章目录 PHP-MYSQL-数据请求类型1、数字型(无符号干扰)2、字符型(有符号干扰)3、搜索型(有多符号干扰)4、框架型(有各种符号干扰) PHP-MYSQL-数据请求方法数据请求方法GET:POST:Coo…...

JS加密/解密那些必须知道的事儿
一直以来,字符串的编码问题对于新手程序员来说,或者平常不太涉猎这方面的程序员来说,是犹如灵异学一样的存在。经常会遇到莫名其妙的编码问题,导致的各种的无法理解的错误。 今天,本问就来介绍一下作者所知晓的一切…...

搭建伪分布式Hadoop
文章目录 一、Hadoop部署模式(一)独立模式(二)伪分布式模式(三)完全分布式模式 二、搭建伪分布式Hadoop(一)登录虚拟机(二)上传安装包(三…...

【C++】特殊类的设计(只在堆、栈创建对象,单例对象)
🌏博客主页: 主页 🔖系列专栏: C ❤️感谢大家点赞👍收藏⭐评论✍️ 😍期待与大家一起进步! 文章目录 一、请设计一个类,只能在堆上创建对象二、 请设计一个类,只能…...

分类预测 | MATLAB实现基于GRU-AdaBoost门控循环单元结合AdaBoost多输入分类预测
分类预测 | MATLAB实现基于GRU-AdaBoost门控循环单元结合AdaBoost多输入分类预测 目录 分类预测 | MATLAB实现基于GRU-AdaBoost门控循环单元结合AdaBoost多输入分类预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.MATLAB实现基于GRU-AdaBoost门控循环单元结…...

【Spring Boot项目】根据用户的角色控制数据库访问权限
文章目录 简介方法一添加数据库依赖配置数据库连接创建用户角色表创建Spring Data JPA实体和仓库实现自定义的网关过滤器配置网关过滤器几个简单的测试API 方法二创建数据库访问接口实现数据库访问接口创建用户角色判断逻辑创建网关过滤器配置网关过滤器 总结 简介 在一些特定…...

EthernetIP 转MODBUS RTU协议网关连接FANUC机器人作为EthernetIP通信从站
远创智控YC-EIPM-RTU网关产品是一款高效的数据采集工具,它可以通过各种数据接口与工业领域的仪表、PLC、计量设备等产品连接,实时采集这些设备中的运行数据、状态数据等信息。采集到的数据经过整合和运算等操作后,可以被传输到其他设备或者云…...

如何注册微信小程序
如何注册微信小程序 前言 因为最近沉迷和朋友们一起下班去打麻将,他们推荐了一个计分的小程序,就不需要每局都转账或者用扑克牌记录了,但是这个小程序不仅打开有广告,各个页面都植入了广告,用起来十分不适。 于是我…...

移动App安全检测的必要性,app安全测试报告的编写注意事项
随着移动互联网的迅猛发展,移动App已经成为人们日常生活中不可或缺的一部分。然而,虽然App给我们带来了便利和乐趣,但也伴随着一些潜在的安全风险。黑客、病毒、恶意软件等威胁着用户的隐私和财产安全,因此进行安全检测就显得尤为…...

DVWA-JavaScript Attacks
JavaScript Attacks JavaScript Attack即JS攻击,攻击者可以利用JavaScript实施攻击。 Low 等级 核心源码,用的是dom语法这是在前端使用的和后端无关,然后获取属性为phrase的值然后来个rot13和MD5双重加密在复制给token属性。 <script&…...
算法通关村第二关|白银|链表反转拓展【持续更新】
1.指定区间反转 1.1 头插法:将区间内遍历到的结点插入到起始处之前。 public ListNode reverseBetween(ListNode head, int left, int right) {ListNode dummyNode new ListNode(-1);dummyNode.next head;ListNode pre dummyNode;// 将pre移动到区间的前一位&a…...

开发者职场“生存状态”大调研报告分析 - 第四版
听人劝、吃饱饭,奉劝各位小伙伴,不要订阅该文所属专栏。 作者:不渴望力量的哈士奇(哈哥),十余年工作经验, 跨域学习者,从事过全栈研发、产品经理等工作,现任研发部门 CTO 。荣誉:2022年度博客之星Top4、博客专家认证、全栈领域优质创作者、新星计划导师,“星荐官共赢计…...

代码与细节(一)
在用到 Java17的新特性 Unmodifiable Lists 时不知道你是否和我有同样的惊讶 为什么弄了这么多重载方法? 先说结论:为了性能。 其实一细想,都能想明白:varargs(可变参数) 的背后是数组的内存分配和初始化,相比正常的…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

visual studio 2022更改主题为深色
visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中,选择 环境 -> 常规 ,将其中的颜色主题改成深色 点击确定,更改完成...
渲染学进阶内容——模型
最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)
引言 工欲善其事,必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后,我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集,就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...

MySQL:分区的基本使用
目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区(Partitioning)是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分(分区)可以独立存储、管理和优化,…...
学习一下用鸿蒙DevEco Studio HarmonyOS5实现百度地图
在鸿蒙(HarmonyOS5)中集成百度地图,可以通过以下步骤和技术方案实现。结合鸿蒙的分布式能力和百度地图的API,可以构建跨设备的定位、导航和地图展示功能。 1. 鸿蒙环境准备 开发工具:下载安装 De…...