当前位置: 首页 > news >正文

分类预测 | MATLAB实现基于BiLSTM-AdaBoost双向长短期记忆网络结合AdaBoost多输入分类预测

分类预测 | MATLAB实现基于BiLSTM-AdaBoost双向长短期记忆网络结合AdaBoost多输入分类预测

目录

    • 分类预测 | MATLAB实现基于BiLSTM-AdaBoost双向长短期记忆网络结合AdaBoost多输入分类预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

1

2
3

4
在这里插入图片描述

基本介绍

1.MATLAB实现基于BiLSTM-AdaBoost双向长短期记忆网络结合AdaBoost多输入分类预测;
2.运行环境为Matlab2020b;
3.输入多个特征,分四类,多特征分类预测;
4.data为数据集,excel数据,前12列输入,最后1列输出四类标签,运行主程序即可,所有文件放在一个文件夹。

模型描述

基于BiLSTM-AdaBoost双向长短期记忆网络的AdaBoost多输入分类预测是一种集成学习方法。它结合了BiLSTM网络和AdaBoost算法的优点,能够捕获时序数据的长期依赖性和非线性关系,并提高预测精度。
BiLSTM网络是一种适用于序列数据的循环神经网络,通过门控机制可以有效地处理长期依赖性的问题。而AdaBoost是一种集成学习算法,通过加权组合多个弱学习器来提高预测准确性。将这两种方法结合起来,可以利用BiLSTM网络提取序列数据的特征,然后将这些特征作为AdaBoost的输入,通过多个弱学习器的加权组合来分类。

程序设计

  • 完整源码和数据获取方式:私信博主回复MATLAB实现基于BiLSTM-AdaBoost双向长短期记忆网络结合AdaBoost多输入分类预测
%%  创建网络
layers = [ ...sequenceInputLayer(12)               % 输入层bilstmLayer(6, 'OutputMode', 'last')   % BiLSTM层reluLayer                            % Relu激活层fullyConnectedLayer(4)               % 全连接层softmaxLayer                         % 分类层classificationLayer];%%  参数设置
options = trainingOptions('adam', ...       % Adam 梯度下降算法'MiniBatchSize', 100, ...               % 批大小'MaxEpochs', 1000, ...                  % 最大迭代次数'InitialLearnRate', 1e-2, ...           % 初始学习率'LearnRateSchedule', 'piecewise', ...   % 学习率下降'LearnRateDropFactor', 0.1, ...         % 学习率下降因子'LearnRateDropPeriod', 700, ...         % 经过700次训练后 学习率为 0.01 * 0.1'Shuffle', 'every-epoch', ...           % 每次训练打乱数据集'ValidationPatience', Inf, ...          % 关闭验证'Plots', 'training-progress', ...       % 画出曲线'Verbose', false);%%  训练模型
net = trainNetwork(p_train, t_train, layers, options);%%  仿真预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); %%  数据反归一化
T_sim1 = vec2ind(t_sim1');
T_sim2 = vec2ind(t_sim2');%%  性能评价
error1 = sum((T_sim1 == T_train)) / M * 100 ;
error2 = sum((T_sim2 == T_test )) / N * 100 ;

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关文章:

分类预测 | MATLAB实现基于BiLSTM-AdaBoost双向长短期记忆网络结合AdaBoost多输入分类预测

分类预测 | MATLAB实现基于BiLSTM-AdaBoost双向长短期记忆网络结合AdaBoost多输入分类预测 目录 分类预测 | MATLAB实现基于BiLSTM-AdaBoost双向长短期记忆网络结合AdaBoost多输入分类预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.MATLAB实现基于BiLSTM-…...

Sobel算子详解及例程

Sobel算子是一种经典的边缘检测算子,被广泛应用于图像处理领域。它基于图像亮度的变化率来检测边缘的位置,主要通过计算图像中像素点的梯度来实现。 Sobel算子分为水平和垂直两个方向的算子,记作Gx和Gy。它们分别对图像进行水平和垂直方向的…...

ScrapeKit 和 Swift 编写程序

以下是一个使用 ScrapeKit 和 Swift 编写的爬虫程序,用于爬取 图片。同时,我们使用了proxy 这段代码来获取代理。 import ScrapeKit ​ class PeopleImageCrawler: NSObject, ScrapeKit.Crawler {let url: URLlet proxyUrl: URL ​init(url: URL, proxy…...

Java基础面试题知识点总结(上篇)

大家好,我是栗筝i,从 2022 年 10 月份开始,我持续梳理出了全面的 Java 技术栈内容,一方面是对自己学习内容进行整合梳理,另一方面是希望对大家有所帮助,使我们一同进步。得到了很多读者的正面反馈。 而在 2…...

STM32进行LVGL裸机移植

本文的移植参考的是正点原子的课程《手把手教你学LVGL图形界面编程》 基于该课程和《LVGL开发指南_V1.3》“第二章 LVGL 无操作系统移植”,然后结合自身的实际情况进行整理。 先根据自己的习惯,创建基础的单片机工程,然后在APP业务层和DRIVE…...

python解析robot framework的output.xml并生成html

一、用pyh模块解析stat结点数据(output.py) #codingutf-8import xml.dom.minidom import xml.etree.ElementTree#打开xml文档 dom xml.dom.minidom.parse(./ui/output.xml);root2 xml.etree.ElementTree.parse(./ui/output.xml) #得到文档元素对象 ro…...

【RuoYi移动端】uni-app中的单击和双击事件

1、单击事件: click"enterpriseSelect" 2、双击事件: touchend"userinfo"...

使用 conda 在 Ubuntu 16.04 上安装 Python 3.9 的步骤:和 VSCode配置

一、使用conda在 Ubuntu 16.04 上安装 Python 3.9 的步骤: 当然可以,conda 是一个非常强大的包管理器,它可以方便地管理不同版本的 Python 和各种库包。以下是使用 conda 在 Ubuntu 16.04 上安装 Python 3.9 的步骤: 1. 安装 Miniconda Miniconda 是 Anaconda 的轻量级版…...

spring6-国际化:i18n | 数据校验:Validation

文章目录 1、国际化:i18n1.1、i18n概述1.2、Java国际化1.3、Spring6国际化1.3.1、MessageSource接口1.3.2、使用Spring6国际化 2、数据校验:Validation2.1、Spring Validation概述2.2、实验一:通过Validator接口实现2.3、实验二:B…...

【MicroSoft Edge】格式化的显示JSON格式的数据

当我们没有进行任何操作的时候,默认浏览器给我们展示的JSON的数据是这样的: 看着十分不便。 解决方案: 首先点击 MicroSoft Edge 浏览器右上角的三点,如何选择扩展 点击 获取Microsoft Edge 扩展 搜索 JSONView,第一…...

【c++】跟webrtc学std array 2:TaskExecutorMap单例用法

D:\XTRANS\m98_rtc\ndrtc-webrtc\src\base\task\task_executor.ccstd array实现的map:TaskExecutorMap // Maps TaskTraits extension IDs to registered TaskExecutors. Index |n| // corresponds to id |n - 1|. using TaskExecutorMap =std::array<TaskExecutor*, Task…...

力扣每日一题59:螺旋矩阵||

题目描述&#xff1a; 给你一个正整数 n &#xff0c;生成一个包含 1 到 n2 所有元素&#xff0c;且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix 。 示例 1&#xff1a; 输入&#xff1a;n 3 输出&#xff1a;[[1,2,3],[8,9,4],[7,6,5]]示例 2&#xff1a; 输入&am…...

codeforces (C++ In Love )

题目&#xff1a; 翻译&#xff1a; 思路&#xff1a; 1、在一个集合中有多组线段&#xff0c;如果有不相交的两组线段&#xff0c;则输出YES&#xff0c;否则输出NO。 2、每次操纵可以选择增加一组线段或者删除一组线段后&#xff0c;输出YES或者NO。 3、用flag标记该线段是否…...

【python】py文件全自动打包成spec文件

说明&#xff1a; 自动获取当前根目录下所有py文件生成spec文件&#xff0c;直接运行pyinstaller进行打包即可。直接打包成单执行文件。 直接上代码 import ospathex []def recursion(path, main):if path[:1] ! /:path /listpath os.listdir(path)for item in listpath:if…...

YOLOv5-调用官方权重进行检验(目标检测)

&#x1f368; 本文为[&#x1f517;365天深度学习训练营学习记录博客 &#x1f366; 参考文章&#xff1a;365天深度学习训练营-第7周&#xff1a;咖啡豆识别&#xff08;训练营内部成员可读&#xff09; &#x1f356; 原作者&#xff1a;[K同学啊 | 接辅导、项目定制](https…...

springMVC中统一异常处理@ControllerAdvice

1.在DispatcherServlet中初始化HandlerExceptionResolver 2.controller执行完成后执行processDispatchResult(processedRequest,response,mappedHandler,mv,dispatchException),有异常则处理异常 3.ExcepitonHandlerExceptionResolver中执行方法doResolveHandlerMethodExceptio…...

【Java】<泛型>,在编译阶段约束操作的数据结构,并进行检查。

个人简介&#xff1a;Java领域新星创作者&#xff1b;阿里云技术博主、星级博主、专家博主&#xff1b;正在Java学习的路上摸爬滚打&#xff0c;记录学习的过程~ 个人主页&#xff1a;.29.的博客 学习社区&#xff1a;进去逛一逛~ JAVA泛型 泛型介绍&#xff1a; ①泛型&#…...

解决谷歌学术bib信息不全的问题

在我们撰写学术论文时&#xff0c;经常需要引用参考文献。如果用latex撰写论文&#xff0c;势必会用到文献的bib信息&#xff0c;大部分的教程都会告诉我们去google scholar上去搜索。 一、问题描述 搜索一篇文章&#xff0c;然后选择cite&#xff0c;再选择bib。 很明显&…...

初始Redis 分布式结构的发展演变

目录 Redis的特点和使用场景 分布式系统的引入 单机系统 分布式系统 应用服务器的增多&#xff08;处理更多的请求&#xff09; 数据库读写分离&#xff08;数据服务器的增多) 引入缓存 应对更大的数据量 业务拆分&#xff1a;微服务 Redis的特点和使用场景 我们先来…...

关于动态内存管理中的常见练习题

文章目录 前言练习1&#xff1a;练习2&#xff1a;练习3&#xff1a;练习4&#xff1a; 前言 学习完C语言中的动态内存管理&#xff0c;大家开始利用动态内存管理来去开辟空间&#xff0c;经过一顿狂敲代码后&#xff0c;发现了问题&#xff0c;程序要么崩掉&#xff0c;要么运…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造&#xff0c;完美适配AGV和无人叉车。同时&#xff0c;集成以太网与语音合成技术&#xff0c;为各类高级系统&#xff08;如MES、调度系统、库位管理、立库等&#xff09;提供高效便捷的语音交互体验。 L…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06&#xff08;十亿美元&#xff09;。漏洞扫描服务市场行业预计将从 2024 年的 3.48&#xff08;十亿美元&#xff09;增长到 2032 年的 9.54&#xff08;十亿美元&#xff09;。预测期内漏洞扫描服务市场 CAGR&#xff08;增长率&…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

MySQL JOIN 表过多的优化思路

当 MySQL 查询涉及大量表 JOIN 时&#xff0c;性能会显著下降。以下是优化思路和简易实现方法&#xff1a; 一、核心优化思路 减少 JOIN 数量 数据冗余&#xff1a;添加必要的冗余字段&#xff08;如订单表直接存储用户名&#xff09;合并表&#xff1a;将频繁关联的小表合并成…...

【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案

目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后&#xff0c;迭代器会失效&#xff0c;因为顺序迭代器在内存中是连续存储的&#xff0c;元素删除后&#xff0c;后续元素会前移。 但一些场景中&#xff0c;我们又需要在执行删除操作…...

深入浅出Diffusion模型:从原理到实践的全方位教程

I. 引言&#xff1a;生成式AI的黎明 – Diffusion模型是什么&#xff1f; 近年来&#xff0c;生成式人工智能&#xff08;Generative AI&#xff09;领域取得了爆炸性的进展&#xff0c;模型能够根据简单的文本提示创作出逼真的图像、连贯的文本&#xff0c;乃至更多令人惊叹的…...