当前位置: 首页 > news >正文

华为昇腾NPU卡 大模型LLM ChatGLM2模型推理使用

参考:https://gitee.com/mindspore/mindformers/blob/dev/docs/model_cards/glm2.md#chatglm2-6b

1、安装环境:

昇腾NPU卡对应英伟达GPU卡,CANN对应CUDA底层; mindspore对应pytorch;mindformers对应transformers

本次环境:
CANN-6.3.RC2.b20231016
mindspore 2.0.0
mindformers (离线安装:https://gitee.com/mindspore/mindformers)
在这里插入图片描述

在这里插入图片描述
查看npu使用信息:

npu-smi info

在这里插入图片描述

2、ChatGLM2模型使用

参考:https://gitee.com/mindspore/mindformers/blob/dev/docs/model_cards/glm2.md

问题参考:
https://gitee.com/mindspore/mindformers/issues/I897LA#note_22105999

代码:

1)pipline方式运行:

import os
import mindspore as msos.environ['DEVICE_ID']='0'
ms.set_context(mode=ms.GRAPH_MODE, device_target="Ascend", device_id=0)  ##需要使用才能npu加速from mindformers import pipeline, TextGenerationPipelinetask_pipeline = pipeline(task='text_generation', model='glm2_6b', max_length=2048)  ##模型自动会下载到checkpoint_download文件夹下task_pipeline('你好') ## 第一次很慢,加载编译阶段
task_pipeline('写一首关于一带一路的诗') ##第二次开始速度才有提升

在这里插入图片描述

由于mindspore不支持一张卡上运行多个任务,所以启动任务都是直接默认申请31G显存占用的,挺耗资源
在这里插入图片描述
2)接口运行

import os
import mindspore as msos.environ['DEVICE_ID']='0'
ms.set_context(mode=ms.GRAPH_MODE, device_target="Ascend",device_id=0)from mindformers import AutoConfig, AutoModel, AutoTokenizertokenizer = AutoTokenizer.from_pretrained("glm2_6b")config = AutoConfig.from_pretrained("glm2_6b")
config.use_past = True
model = AutoModel.from_config(config)##第一轮问问题
inputs = tokenizer("你好")["input_ids"]
# print(inputs)
outputs = model.generate(inputs, max_new_tokens=20, do_sample=True, top_k=3)response = tokenizer.decode(outputs)
print(response)

第一轮加载编译还是很慢,后续速度才提升

##第二轮问问题
inputs = tokenizer("写一首一带一路的诗")["input_ids"]
# print(inputs)
outputs = model.generate(inputs, max_new_tokens=500, do_sample=True, top_k=3)
response = tokenizer.decode(outputs)
print(response)

在这里插入图片描述
3)流式输出(与transformers接口基本相似;基本只支持配合上面的2)接口运行使用,pipline不大支持)
参考:https://gitee.com/mindspore/mindformers/blob/dev/mindformers/generation/streamers.py#L64
https://blog.csdn.net/weixin_44491772/article/details/131205174

第一种(主要用):TextIteratorStreamer

##加载模型
import os
import mindspore as msos.environ['DEVICE_ID']='0'
ms.set_context(mode=ms.GRAPH_MODE, device_target="Ascend",device_id=0)from mindformers import AutoConfig, AutoModel, AutoTokenizertokenizer = AutoTokenizer.from_pretrained("glm2_6b")config = AutoConfig.from_pretrained("glm2_6b")
config.use_past = True
model = AutoModel.from_config(config)##第一轮问问题
inputs = tokenizer("你好")["input_ids"]
# print(inputs)
outputs = model.generate(inputs, max_new_tokens=20, do_sample=True, top_k=3)response = tokenizer.decode(outputs)
print(response)###流式代码
from mindformers import  TextIteratorStreamer
from threading import Threadstreamer = TextIteratorStreamer(tokenizer)prompt = "写一首一带一路的诗"
inputs = tokenizer([prompt])
generation_kwargs = dict(input_ids=inputs["input_ids"], streamer=streamer, max_length=500, top_k=1)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
generated_text = ""
for num,new_text in enumerate(streamer):# print(num,new_text)if num>1:print(new_text, end='',flush=True)#print(new_text, end='',flush=True)generated_text += new_text
generated_text

在这里插入图片描述
在这里插入图片描述

第二种:TextStreamer

from mindformers import  TextStreamerinputs = tokenizer(["写一首一带一路的诗"])streamer = TextStreamer(tokenizer)_ = model.generate(inputs["input_ids"], streamer=streamer, max_length=500, top_k=1)

在这里插入图片描述

4)history构建
参考:https://aistudio.baidu.com/projectdetail/6519985
https://zhuanlan.zhihu.com/p/650730807

def prepare_query_for_chat(query: str, history = None):if history is None:return queryelse:prompt = ""for i, (old_query, response) in enumerate(history):prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response)prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)return promptprompt = prepare_query_for_chat(query="你是谁?", history=[("你叫小乐主要擅长是智慧城市和智慧安全方向,核心技术包括专用高性能计算,解密设备,无人机智能反制系统,云计算平台,AI行为分析等,愿景是让城市更智慧,让世界更安全;每次回答请都简要回答不超过30个字","好的,小乐很乐意为你服务")]
)
print(prompt)

完整代码:

from mindformers import  TextIteratorStreamer
from threading import Threadstreamer = TextIteratorStreamer(tokenizer)prompt = prepare_query_for_chat(query="你能做什么?", history=[("你主要擅长是智慧城市和智慧安全方向,核心技术包括专用高性能计算,解密设备,无人机智能反制系统,云计算平台,AI行为分析等,愿景是让城市更智慧,让世界更安全;每次回答请都简要回答不超过30个字","好的,小**很乐意为你服务")]
)
inputs = tokenizer([prompt])
generation_kwargs = dict(input_ids=inputs["input_ids"], streamer=streamer, max_length=5000, top_k=1)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
generated_text = ""
for num,new_text in enumerate(streamer):# print(num,new_text)if num>=1:print(new_text, end='',flush=True)generated_text += new_text
generated_text

在这里插入图片描述

相关文章:

华为昇腾NPU卡 大模型LLM ChatGLM2模型推理使用

参考:https://gitee.com/mindspore/mindformers/blob/dev/docs/model_cards/glm2.md#chatglm2-6b 1、安装环境: 昇腾NPU卡对应英伟达GPU卡,CANN对应CUDA底层; mindspore对应pytorch;mindformers对应transformers 本…...

Git 拉取远程更新报错

报错内容如下: cannot lock ref refs/remotes/origin/bugfix/bug: refs/remotes/origin/bugfix 已存在,无法创建 refs/remotes/origin/bugfix/bug 来自 gitlab.zhangyue-inc.com:dejian_ios/iReaderDejian! [新分支] bugfix/bug -> ori…...

腾讯云国际站服务器端口开放失败怎么办?

腾讯云服务器是腾讯公司推出的一种云服务,用户能够经过这种方式在互联网上进行数据存储和计算。然而,用户在运用腾讯云服务器时或许会遇到各种问题,其间端口敞开失利是一个常见问题。本文将具体介绍如何解决腾讯云服务器端口敞开失利的问题。…...

一句话解释什么是出口IP

出口 IP 是指从本地网络连接到公共互联网时所使用的 IP 地址。这个 IP 地址是由 Internet 服务提供商(ISP)分配给你的,它可以用来标识你的网络流量的来源。如果你使用的是 NAT(网络地址转换)技术,则在 NAT 设备内部会进行地址转换,使得多个设备可以共享同一个公共 IP 地…...

深入理解强化学习——强化学习的历史:试错学习

分类目录:《深入理解强化学习》总目录 让我们现在回到另一条通向现代强化学习领域的主线上,它的核心则是试错学习思想。我们在这里只对要点做概述,《深入理解强化学习》系列后面的文章会更详细地讨论这个主题。根据美国心理学家R.S.woodworth…...

分享一个用HTML、CSS和jQuery构建的漂亮的登录注册界面

作为一个前端开发人员,我们经常需要构建用户的登录和注册界面。一个漂亮、用户友好的登录注册界面对于提升用户体验和网站形象至关重要。以下我们使用HTML、CSS和jQuery来做一个漂亮的登录注册界面。 首先,我们需要创建一个html文档,定义登录…...

Java学习 习题 1.

一、 1.2. 3. 4. 5. 二、 1. 2. 3. 4. 5. 6. 7. 8....

第六节——Vue中的事件

一、定义事件 Vue 元素的事件处理和 DOM 元素的很相似,但是有一点语法上的不同 使用修饰符(v-on:的缩写)事件名的方式 给dom添加事件后面跟方法名,方法名可以直接加括号如click"add()"里面进行传参。对应的事件处理函…...

设置GridView单选

/// <summary> /// 设置GridView单选 /// </summary> /// <param name"view"></param> /// <param name"selectCaption"></param> public static void SetGridViewSingleSel…...

[Python从零到壹] 七十二.图像识别及经典案例篇之OpenGL入门及绘制基本图形和3D图

十月太忙,还是写一篇吧!祝大家1024节日快乐O(∩_∩)O 欢迎大家来到“Python从零到壹”,在这里我将分享约200篇Python系列文章,带大家一起去学习和玩耍,看看Python这个有趣的世界。所有文章都将结合案例、代码和作者的经验讲解,真心想把自己近十年的编程经验分享给大家,希…...

论文-分布式-并发控制-Lamport逻辑时钟

目录 前言 逻辑时钟讲解 算法类比为面包店内取号 Lamport算法的时间戳原理 Lamport算法的5个原则 举例说明 算法实现 参考文献 前言 在并发系统中&#xff0c;同步与互斥是实现资源共享的关键Lamport面包店算法作为一种经典的解决并发问题的算法&#xff0c;它的实现原…...

长三角实现区块链电子医疗票据互联互通,蚂蚁链提供技术支持

10月25日&#xff0c;记者从浙江省财政厅发布的消息获悉&#xff0c;上海、浙江、江苏和安徽三省一市基于蚂蚁链实现区块链电子医疗票据互联互通&#xff0c;商业保险理赔作为首个规模化应用场景正式落地&#xff0c;蚂蚁保“安心赔”理赔服务率先接入。 今后&#xff0c;老百…...

Redis快速上手篇(三)(事务+Idea的连接和使用)

Redis事务 可以一次执行多个命令&#xff0c;本质是一组命令的集合。一个事务中的 所有命令都会序列化&#xff0c;按顺序地串行化执行而不会被其它命令插入&#xff0c;不许加塞。 单独的隔离的操作 官网说明 https://redis.io/docs/interact/transactions/ MULTI、EXEC、…...

Spring三级缓存解决循环依赖问题

文章目录 1. 三级缓存解决的问题场景2. 三级缓存的差异性3. 循环依赖时的处理流程4. 源码验证 1. 三级缓存解决的问题场景 循环依赖指的是在对象之间存在相互依赖关系&#xff0c;形成一个闭环&#xff0c;导致无法准确地完成对象的创建和初始化&#xff1b;当两个或多个对象彼…...

Unity 中使用波浪动画创建 UI 图像

如何使用 只需将此组件添加到画布中的空对象即可。强烈建议您将此对象放入其自己的画布/嵌套画布中&#xff0c;因为它会弄脏每一帧的画布并导致重新生成整个网格。 注意&#xff1a;不支持切片图像。 using System.Collections.Generic; using UnityEngine; using UnityEng…...

支付功能测试用例测试点?

支付功能测试用例测试点是指在测试支付功能时&#xff0c;需要关注和验证的各个方面。根据不同的支付场景和需求&#xff0c;支付功能测试用例测试点可能有所不同&#xff0c;但一般可以分为以下几类&#xff1a; 功能测试&#xff1a;主要检查支付功能是否符合设计和业务需求…...

HFS 快速搭建 http 服务器

HFS 是一个轻量级的HTTP 服务工具&#xff0c;3.0版本前进提供Windows平台安装包&#xff0c;3.0版本开提供Linux和macOS平台的安装包。 HFS更适合在局域网环境中搭建文件共享服务或者安装配置源服务器。 甲 非守护进程的方式运行 HFS &#xff08;Ubuntu 22.04&#xff09; 一…...

学生专用台灯怎么选?双十一专业学生护眼台灯推荐

台灯应该是很多家庭都会备上一盏的家用灯具&#xff0c;很多大人平时间看书、用电脑都会用上它&#xff0c;不过更多的可能还是给家中的小孩学习、阅读使用的。而且现在的孩子近视率如此之高&#xff0c;这让家长们不得不重视孩子的视力健康问题。那么孩子学习使用的台灯应该怎…...

Go 常用标准库之 fmt 介绍与基本使用

Go 常用标准库之 fmt 介绍与基本使用 文章目录 Go 常用标准库之 fmt 介绍与基本使用一、介绍二、向外输出2.1 Print 系列2.2 Fprint 系列2.3 Sprint 系列2.4 Errorf 系列 三、格式化占位符3.1 通用占位符3.2 布尔型3.3 整型3.4 浮点数与复数3.5 字符串和[]byte3.6 指针3.7 宽度…...

antv/x6 导出图片方法exportPNG

antv/x6 导出图片方法exportPNG antv/x6 版本如下&#xff1a; "antv/x6": "2.14.1","antv/x6-plugin-export": "2.1.6",在文件中导入 import { Graph, Shape, StringExt } from antv/x6 import { Export } from antv/x6-plugin-exp…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

HashMap中的put方法执行流程(流程图)

1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中&#xff0c;其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下&#xff1a; 初始判断与哈希计算&#xff1a; 首先&#xff0c;putVal 方法会检查当前的 table&#xff08;也就…...

蓝桥杯 冶炼金属

原题目链接 &#x1f527; 冶炼金属转换率推测题解 &#x1f4dc; 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V&#xff0c;是一个正整数&#xff0c;表示每 V V V 个普通金属 O O O 可以冶炼出 …...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程&#xff1f; 2. Java创建对象的过程&#xff1f; 3. 对象的生命周期&#xff1f; 4. 类加载器有哪些&#xff1f; 5. 双亲委派模型的作用&#xff08;好处&#xff09;&#xff1f; 6. 讲一下类的加载和双亲委派原则&#xff1f; 7. 双亲委派模…...

Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换

目录 关键点 技术实现1 技术实现2 摘要&#xff1a; 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式&#xff08;自动驾驶、人工驾驶、远程驾驶、主动安全&#xff09;&#xff0c;并通过实时消息推送更新车…...

【Android】Android 开发 ADB 常用指令

查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...

uniapp 实现腾讯云IM群文件上传下载功能

UniApp 集成腾讯云IM实现群文件上传下载功能全攻略 一、功能背景与技术选型 在团队协作场景中&#xff0c;群文件共享是核心需求之一。本文将介绍如何基于腾讯云IMCOS&#xff0c;在uniapp中实现&#xff1a; 群内文件上传/下载文件元数据管理下载进度追踪跨平台文件预览 二…...