当前位置: 首页 > news >正文

YOLOv5算法改进(20)— 如何去写YOLOv5相关的论文(包括论文阅读+规律总结+写作方法)

前言:Hello大家好,我是小哥谈。最近一直在阅读关于YOLOv5的相关论文,读着读着我发现一条可以发论文的规律,特此简单总结一下,希望能够对同学们有所启迪!🌈  

 前期回顾:

              YOLOv5算法改进(1)— 如何去改进YOLOv5算法

              

相关文章:

YOLOv5算法改进(20)— 如何去写YOLOv5相关的论文(包括论文阅读+规律总结+写作方法)

前言:Hello大家好,我是小哥谈。最近一直在阅读关于YOLOv5的相关论文,读着读着我发现一条可以发论文的规律,特此简单总结一下,希望能够对同学们有所启迪!🌈 前期回顾: YOLOv5算法改进(1)— 如何去改进YOLOv5算法...

Kotlin基础——函数、变量、字符串模板、类

函数、变量、字符串模板、类 函数变量字符串模板类 函数 函数组成为 fun 函数名(参数名: 参数类型, …): 返回值{} fun max(a: Int, b: Int): Int {return if (a > b) a else b }上面称为代码块函数体,当函数体由单个表达式构成时,可简化为表达式函…...

联邦存款保险公司与银行失败和失败银行列表数据集

分享目的:了解M国数据,分析美国银行业和保险行业 美国联邦存款保险公司(FDIC)以及通常与银行失败和失败银行列表相关的一些常见信息。 美国联邦存款保险公司(FDIC):美国联邦存款保险公司是美国…...

【FPGA】IIC协议通用主机接口的设计与实现详解

一、认识IIC IIC(I2C)协议是一种串行通信协议,用于连接微控制器和外围设备。IIC协议只需要两根信号线(时钟线SCL和数据线SDA)就能完成设备之间的通信;支持多主机和多从机通信,通过设备地址区分不…...

《红蓝攻防对抗实战》八.利用OpenSSL对反弹shell流量进行加密

前文推荐: 《红蓝攻防对抗实战》一. 隧道穿透技术详解《红蓝攻防对抗实战》二.内网探测协议出网之TCP/UDP协议探测出网《红蓝攻防对抗实战》三.内网探测协议出网之HTTP/HTTPS协议探测出网《红蓝攻防对抗实战》四.内网探测协议出网之ICMP协议探测出网《红蓝攻防对抗…...

手机桌面待办事项APP推荐

每天,我们每个人都面临着繁琐的事务和任务,而手机成了我们日常生活中不可或缺的伙伴。手机上的待办事项工具像一个可靠的助手,可以帮助我们更好地记录、管理和完成任务。在手机桌面上使用的待办事项APP推荐用哪一个呢? 手机是我们…...

2023NOIP A层联测18 划分

题目大意 对于一个长度为 n n n的 01 01 01字符串 S S S,请求出将其分为至少 k k k段,将每段看成二进制数求和后的最大值以及取到这个最大值的划分方案的数量。 输出最大值模 998244353 998244353 998244353后的值和划分方案的数量模 998244353 998244…...

pc与android设备进行通信

首先:根据此博客 Android模拟器调试TCP通讯_.emulator_console_auth_token-CSDN博客 思考: 只在本机电脑中: 服务器IP地址设为为0.0.0.0,并开始监听,客户端IP地址127.0.0.1,192.168.1.114都可连接。 12…...

【网安大模型专题10.19】论文6:Java漏洞自动修复+数据集 VJBench+大语言模型、APR技术+代码转换方法+LLM和DL-APR模型的挑战与机会

How Effective Are Neural Networks for Fixing Security Vulnerabilities 写在最前面摘要贡献发现 介绍背景:漏洞修复需求和Java漏洞修复方向动机方法贡献 数据集先前的数据集和Java漏洞Benchmark数据集扩展要求数据处理工作最终数据集 VJBenchVJBench 与 Vul4J 的…...

const 和 volatile 在实例成员函数的应用

const 和 volatile 的使用范围几乎没有限制 实例成员函数的参数后面可以出现 const 或 volatile,它们都用于修饰函数隐含参数 this 指向的对象 实例函数对象的参数表后面出现 const 说明this 所指向的对象是不能修改的只读对象 但是可以修改this所指向对象的非只读类…...

比Nginx测试桩更方便,ShenYu网关的Mock插件

有时候为了方便测试,我们需要模拟 HTTP 外部接口的返回结果。通常情况下,我们可以使用 Nginx 测试桩来实现这个目的。然而,Nginx 的使用门槛较高,可能对一些初级开发和测试人员来说有一定的难度。相比之下,Apache Shen…...

IDEA: 自用主题及字体搭配推荐

文章目录 1. 字体设置推荐2. 主题推荐3. Rainbow Brackets(彩虹括号)4. 设置背景图片 下面是我的 IDEA 主题和字体,它们的搭配效果如下: 1. 字体设置推荐 在使用 IntelliJ IDEA 进行编码和开发时,一个合适的字体设置可以提高你的工作效率和舒…...

Qt中的枚举变量,Q_ENUM,Q_FLAG以及Qt中自定义结构体、枚举型做信号参数传递

Qt中的枚举变量,Q_ENUM,Q_FLAG,Q_NAMESPACE,Q_ENUM_NS,Q_FLAG_NS以及其他 理论基础:一、Q_ENUM二、QMetaEnum三、Q_FLAG四、示例 Chapter1 Qt中的枚举变量,Q_ENUM,Q_FLAG,Q_NAMESPACE,Q_ENUM_NS,Q_FLAG_NS以及其他前言Q_ENUM的使用Q_FLAG的引入解决什么问题&#xf…...

【C++】priority_queue仿函数

今天我们来学习C中另一个容器适配器:优先级队列——priority_queue;和C一个重要组件仿函数: 目录 一、priority_queue 1.1 priority_queue是什么 1.2 priority_queue的接口 1.2.1 priority_queue使用举例 二、仿函数 三、关于priority…...

如何驾驭ChatGPT:掌控有效对话!

📢📢📢📣📣📣 哈喽!大家好,我是【一心同学】,一位上进心十足的【后端领域博主】!😜😜😜 ✨【一心同学】的写作风格&#x…...

LeetCode 面试题 16.03. 交点

文章目录 一、题目二、C# 题解 一、题目 给定两条线段(表示为起点 start {X1, Y1} 和终点 end {X2, Y2}),如果它们有交点,请计算其交点,没有交点则返回空值。 要求浮点型误差不超过 10^-6。若有多个交点(…...

【码银送书第九期】《ChatGPT 驱动软件开发:AI 在软件研发全流程中的革新与实践》

计算机技术的发展和互联网的普及,使信息处理和传输变得更加高效,极大地改变了金融、商业、教育、娱乐等领域的运作方式。数据分析、人工智能和云计算等新兴技术,也在不断地影响和改变着各个行业。 如今,我们正在见证人工智能技术的…...

Hadoop3.0大数据处理学习4(案例:数据清洗、数据指标统计、任务脚本封装、Sqoop导出Mysql)

案例需求分析 直播公司每日都会产生海量的直播数据,为了更好地服务主播与用户,提高直播质量与用户粘性,往往会对大量的数据进行分析与统计,从中挖掘商业价值,我们将通过一个实战案例,来使用Hadoop技术来实…...

华为机试题:HJ3 明明的随机数

目录 第一章、算法题1.1)题目描述1.2)解题思路与答案1.3)牛客链接 友情提醒: 先看文章目录,大致了解文章知识点结构,点击文章目录可直接跳转到文章指定位置。 第一章、算法题 1.1)题目描述 题目描述&…...

Python OpenCV将n×n的小图拼接成m×m的大图

Python OpenCV将nn的小图拼接成mm的大图 前言前提条件相关介绍实验环境n \times n的小图拼接成m \times m的大图代码实现 前言 由于本人水平有限,难免出现错漏,敬请批评改正。更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage)&#xff1a…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

docker详细操作--未完待续

docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...