当前位置: 首页 > news >正文

R语言在生态环境领域中的实践技术应用

R语言作为新兴的统计软件,以开源、自由、免费等特点风靡全球。生态环境领域研究内容广泛,数据常多样而复杂。利用R语言进行多元统计分析,从复杂的现象中发现规律、探索机制正是R的优势。为此,以鱼类、昆虫、水文、地形等多样化的生态环境数据为例,在R语言的基本操作介绍基础上,利用vegan、ade4、adespatial、stats、cluster、dendextend等多个程序包分析数据的分布、相关性、回归、聚类、排序、空间结构和群落多样性等内容,解读其结果及生态学意义,并将数据分析和作图展现集成于一体,引导读者能够系统运用R语言在生态环境领域进行多方位分析与探索。

点击查看原文链接

专题一  R语言基本操作及语法
1、R的获取和安装
2、R的数据类型
3、R的函数
4、R包的载入及使用

专题二 探索性数据分析
案例一:不同物种的多度分析
案例二:不同物种在样方中的空间分布
案例三:水文、地形等环境数据地图
 

图片


环境变量气泡图

专题三 相关性分析
1、不同变量之间的相关性分析
2、不同物种之间的差异及距离矩阵
3、图解关联矩阵
 

图片


不同环境因子Pearson相关性图

专题四 回归分析
1、用lm()拟合回归模型
2、一元及多元线性回归
3、多项式回归
4、回归诊断
5、选择最佳的回归模型
 

图片


生物量对各因素的回归诊断图

专题五 聚类分析
案例:样方之间的不同类型聚类及比较
(单连接、完全连接、平均聚合聚类(UPGMA)、Ward最小方差聚类等)

图片

两种聚类树及其比较

专题六 排序分析
1、主成分分析(PCA)
2、对应分析(CA)
3、主坐标分析(PCoA)
4、非度量多维尺度分析(NMDS)

专题七  数据空间分析
1、空间结构和空间分析概述
2、多元趋势面分析
3、基于特征根的空间变量和空间建模
4、多尺度排序(MSO)

专题八 生物多样性分析
1、生物群落的稀疏度分析
2、生物群落的alpha、beta和gamma多样性
3、群落功能多样性、功能组成和谱系多样性

相关文章:

R语言在生态环境领域中的实践技术应用

R语言作为新兴的统计软件,以开源、自由、免费等特点风靡全球。生态环境领域研究内容广泛,数据常多样而复杂。利用R语言进行多元统计分析,从复杂的现象中发现规律、探索机制正是R的优势。为此,以鱼类、昆虫、水文、地形等多样化的生…...

ChineseChess.2023.10.31.01

中国象棋残局模拟器:黑双卒压禁区 中国象棋残局模拟器ChineseChess.2023.10.31.01...

数据库扩展语句和约束方式以及用户管理

数据库扩展语句和约束方式以及用户管理 create TABLE if not exists ky32 ( id int(4) zerofill primary key auto_increment, name varchar(10) not null, cradid int(18) not null unique key, hobby varchar (50) ); auto_increment:表示该字段可以自增长&…...

JMM 简单理解

JMM 简单理解 1 Java 内存模型 Java 内存模型(Java Memory Model,JMM),主要为了屏蔽各种硬件和操作系统的内存差异,以实现让 Java 程序在各种平台下都能达到一致的内存访问效果,而设计的 2 工作内存与主内…...

微软Azure文本转音频,保存成MP3文件【代码python3】

标签: 文本转音频并保存mp3文件; 微软Azure; 微软Azure可以将文本转音频,并保存mp3文件,直接上代码 代码格式:python 3 import os import azure.cognitiveservices.speech as speechsdk# This example re…...

基于单片机的超声波探伤仪设计

摘要 超声波探伤仪是目前工业制造和现代化检测的重要途径之一,广泛的应用在质量检测和产品检测中,通过使用其产品能够有效地降低产品次品的风险。尽管随着电子技术的发展, 国内出现了一些数字化的超声检测仪器,但其数据处理及扩展…...

idea的设置

1.设置搜索encoding,所有编码都给换为utf-8 安装插件 eval-reset插件 https://www.yuque.com/huanlema-pjnah/okuh3c/lvaoxt#m1pdA 设置活动模板,idea有两种方式集成tomcat,一种是右上角config配置本地tomcat,一种是插件,如果使用插件集成,则在maven,pom.xml里面加上tomcat…...

高等数学啃书汇总重难点(八)向量代数与空间解析几何

持续更新,高数下第一章,整体来说比较简单,但是需要牢记公式,切莫掉以轻心~ 一.向量平行的充要条件 二.向量坐标的线性运算 三.向量的几何性质 四.数量积 五.向量积 六.混合积 七.曲面方程 八.空间曲线方程 九.平面的点法式方程 十…...

C#开发DLL,CAPL调用(CAPL>> .NET DLL)

文章目录 展示说明新建类库工程C# 代码生成dllCAPL脚本调用dll,输出结果展示 ret为dll里函数返回的值。 说明 新建类库工程 在visual studio中建立。 C# 代码 using...

0-1背包问题【穷举法+二维dp数组】

问题描述: 使用穷举法解决0/1背包问题。问题描述:给定n个重量为{w1, w2, … ,wn}、价值为{v1, v2, … ,vn} 的物品和一个容量为C的背包,求这些物品中的一个最有价值的子集,且要能够装到背包中。 穷举法:每件物品装还是…...

nodejs+vue+python+php基于微信小程序的在线学习平台设计与实现-计算机毕业设计

困扰管理层的许多问题当中,在线学习也是不敢忽视的一块。但是管理好在线学习又面临很多麻烦需要解决,例如:如何在工作琐碎,记录繁多的情况下将在线学习的当前情况反应给课程问题管理员决策,等等。 流,开发一个在线学习平台小程序一方面的可能会更合乎时宜,另一方面来…...

Spring学习笔记2 Spring的入门程序

Spring学习笔记1 启示录_biubiubiu0706的博客-CSDN博客 Spring官网地址:https://spring.io 进入github往下拉 用maven引入spring-context依赖 写spring的第一个程序 引入下面依赖,好比引入Spring的基本依赖 <dependency><groupId>org.springframework</groupId&…...

【Linux】虚拟机安装Linux、客户端工具及Linux常用命令(详细教程)

一、导言 1、引言 Linux是一个开源的操作系统内核&#xff0c;它最初由芬兰计算机科学家Linus Torvalds于1991年开发。Linux不同于传统的商业操作系统&#xff0c;它常用于服务器、嵌入式系统和个人电脑等各种平台。 Linux具有很多优点&#xff0c;包括稳定性、安全性和可定制…...

Day 47 动态规划 part13

Day 47 动态规划 part13 解题理解300674718 3道题目 300. 最长递增子序列 674. 最长连续递增序列 718. 最长重复子数组 解题理解 300 dp[i]被设置为以nums[i]为结尾的最长递增子序列长度。 class Solution:def lengthOfLIS(self, nums: List[int]) -> int:if len(nums) …...

【广州华锐互动】飞机诊断AR远程指导系统为工程师提供更多支持

随着科技的发展&#xff0c;飞机的维护工作也在不断进步。其中&#xff0c;AR&#xff08;增强现实&#xff09;技术的应用使得远程运维成为可能。本文将探讨AR在飞机诊断远程指导系统中的应用&#xff0c;以及它对未来航空维护模式的影响。 AR远程指导系统是一种使用增强现实技…...

【贝叶斯回归】【第 2 部分】--推理算法

一、说明 在第一部分中&#xff0c;我们研究了如何使用 SVI 对简单的贝叶斯线性回归模型进行推理。在本教程中&#xff0c;我们将探索更具表现力的指南以及精确的推理技术。我们将使用与之前相同的数据集。 二、模块导入 [1]:%reset -sf[2]:import logging import osimport tor…...

【深入浅出汇编语言】寄存器精讲第二期

&#x1f308;个人主页&#xff1a;聆风吟 &#x1f525;系列专栏&#xff1a;数据结构、算法模板、汇编语言 &#x1f516;少年有梦不应止于心动&#xff0c;更要付诸行动。 文章目录 &#x1f4cb;前言一. ⛳️物理地址二. ⛳️16位结构的CPU三. ⛳️8086CPU给出物理地址的方…...

如何保证分布式情况下的幂等性

关于这个分布式服务的幂等性,这是在使用分布式服务的时候会经常遇到的问题,比如,重复提交的问题。而幂等性,就是为了解决问题存在的一个概念了。 什么是幂等 幂等(idempotent、idempotence)是⼀个数学与计算机学概念,常⻅于抽象代数中。 在编程中⼀个幂等操作的特点是…...

Mybatis特殊SQL的执行

文章目录 模糊查询批量删除动态设置表名添加功能获取自增的主键自定义映射resultMapresultMap处理字段和属性的映射关系 多对一映射处理级联方式处理映射关系使用association处理映射关系 分步查询1. 查询员工信息 2. 查询部门信息 一对多映射处理collection 模糊查询 /*** 根…...

MyBatis-Flex(一):快速开始

框架介绍 MyBatis-Flex 是一个优雅的 MyBatis 增强框架&#xff0c;它非常轻量、同时拥有极高的性能与灵活性。 MyBatis-Flex 官方文档 说明 本文参照官方文档的【快速开始】 章节&#xff0c;编写 Spring Boot 项目的代码示例。 快速开始 创建数据库表 直接参照官网示…...

51c自动驾驶~合集58

我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留&#xff0c;CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制&#xff08;CCA-Attention&#xff09;&#xff0c;…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

【2025年】解决Burpsuite抓不到https包的问题

环境&#xff1a;windows11 burpsuite:2025.5 在抓取https网站时&#xff0c;burpsuite抓取不到https数据包&#xff0c;只显示&#xff1a; 解决该问题只需如下三个步骤&#xff1a; 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式&#xff1a; 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

SpringCloudGateway 自定义局部过滤器

场景&#xff1a; 将所有请求转化为同一路径请求&#xff08;方便穿网配置&#xff09;在请求头内标识原来路径&#xff0c;然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

MFC 抛体运动模拟:常见问题解决与界面美化

在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...

mac:大模型系列测试

0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何&#xff0c;是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试&#xff0c;是可以跑通文章里面的代码。训练速度也是很快的。 注意…...

沙箱虚拟化技术虚拟机容器之间的关系详解

问题 沙箱、虚拟化、容器三者分开一一介绍的话我知道他们各自都是什么东西&#xff0c;但是如果把三者放在一起&#xff0c;它们之间到底什么关系&#xff1f;又有什么联系呢&#xff1f;我不是很明白&#xff01;&#xff01;&#xff01; 就比如说&#xff1a; 沙箱&#…...