py实现surf特征提取
import cv2def main():# 加载图像image1 = cv2.imread('image1.jpg', cv2.IMREAD_GRAYSCALE)image2 = cv2.imread('image2.jpg', cv2.IMREAD_GRAYSCALE)# 创建SURF对象surf = cv2.xfeatures2d.SURF_create()# 检测特征点和描述符keypoints1, descriptors1 = surf.detectAndCompute(image1, None)keypoints2, descriptors2 = surf.detectAndCompute(image2, None)# 绘制特征点result_image1 = cv2.drawKeypoints(image1, keypoints1, None, (0, 255, 0), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)result_image2 = cv2.drawKeypoints(image2, keypoints2, None, (0, 255, 0), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)# 显示图像cv2.imshow("Image 1", result_image1)cv2.imshow("Image 2", result_image2)cv2.waitKey(0)cv2.destroyAllWindows()if __name__ == "__main__":main()
import cv2
import numpy as npdef main():# 加载图像image1 = cv2.imread('image1.jpg', cv2.IMREAD_GRAYSCALE)image2 = cv2.imread('image2.jpg', cv2.IMREAD_GRAYSCALE)# 创建SURF对象surf = cv2.xfeatures2d.SURF_create()# 检测特征点和描述符keypoints1, descriptors1 = surf.detectAndCompute(image1, None)keypoints2, descriptors2 = surf.detectAndCompute(image2, None)# 创建匹配器matcher = cv2.DescriptorMatcher_create(cv2.DescriptorMatcher_FLANNBASED)matches = matcher.match(descriptors1, descriptors2)# 根据距离排序匹配项matches = sorted(matches, key=lambda x: x.distance)# 提取前10个最佳匹配项good_matches = matches[:10]# 绘制匹配点和线条result_image = cv2.drawMatches(image1, keypoints1, image2, keypoints2, good_matches, None, flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS)# 显示图像cv2.imshow("Matches", result_image)cv2.waitKey(0)cv2.destroyAllWindows()if __name__ == "__main__":main()
相关文章:
py实现surf特征提取
import cv2def main():# 加载图像image1 cv2.imread(image1.jpg, cv2.IMREAD_GRAYSCALE)image2 cv2.imread(image2.jpg, cv2.IMREAD_GRAYSCALE)# 创建SURF对象surf cv2.xfeatures2d.SURF_create()# 检测特征点和描述符keypoints1, descriptors1 surf.detectAndCompute(imag…...
MS39233三个半桥驱动器可兼容TMC6300
MS39233 是一款低压三个半桥驱动器。可兼容 TMC6300(功能基本一致,管脚不兼容)。它可应用于低电压及电池供电的运动控制场合。并且内置电荷泵来提供内部功率 NMOS 所需的栅驱动电压。 MS39233 可以提供最高 2.8A 的峰值电流,其功率…...
09、SpringCloud -- 利用redis的原子性控制高并发请求访问到service层、本地标识
目录 利用redis的原子性控制请求问题:需求:思路什么是原子性的操作?代码思路:代码:工具类依赖SeckillGoodControllerSeckillOrderInfoController测试:本地标识的分析和实现问题:需求:思路:代码:测试:利用redis的原子性控制请求 利用redis的原子性控制人数请求访问到…...
竞赛选题 深度学习图像修复算法 - opencv python 机器视觉
文章目录 0 前言2 什么是图像内容填充修复3 原理分析3.1 第一步:将图像理解为一个概率分布的样本3.2 补全图像 3.3 快速生成假图像3.4 生成对抗网络(Generative Adversarial Net, GAN) 的架构3.5 使用G(z)生成伪图像 4 在Tensorflow上构建DCGANs最后 0 前言 &#…...
基于深度学习网络的美食检测系统matlab仿真
目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 % 图像大小 image_size [224 224 3]; num_classes size(VD,2)-1;% 目标类别数量…...
人工智能基础_机器学习006_有监督机器学习_正规方程的公式推导_最小二乘法_凸函数的判定---人工智能工作笔记0046
我们来看一下公式的推导这部分比较难一些, 首先要记住公式,这个公式,不用自己理解,知道怎么用就行, 比如这个(mA)T 这个转置的关系要知道 然后我们看这个符号就是求X的导数,X导数的转置除以X的导数,就得到单位矩阵, 可以看到下面也是,各种X的导数,然后计算,得到对应的矩阵结…...
【MongoDB】Windows 安装MongoDB 6.0
一、下载安装包 安装包下载地址https://www.mongodb.com/try/download/community这里我选择的是 二、解压并安装 1、解压 这里我将压缩包解压到了D盘,并重命名成了mongodb,解压后的目录如下: 2、创建配置文件 在D:\mongodb下新建conf目录…...
DM8 Dokcer镜像更新后远程无法jdbc连接问题
背景:原来官网下的dm8docker镜像有效期只有两个星期,问他们商务申请了新的dm8镜像,准备简单升级一下镜像再引入原来的database 先说结论:jdbc驱动要更新 官网dm8驱动链接地址 原来的tag镜像 dm8_single:v8.1.2.128_ent_x86_64…...
AI:39-基于深度学习的车牌识别检测
🚀 本文选自专栏:AI领域专栏 从基础到实践,深入了解算法、案例和最新趋势。无论你是初学者还是经验丰富的数据科学家,通过案例和项目实践,掌握核心概念和实用技能。每篇案例都包含代码实例,详细讲解供大家学习。 📌📌📌本专栏包含以下学习方向: 机器学习、深度学…...
软考 系统架构设计师系列知识点之系统架构评估(1)
所属章节: 第8章. 系统质量属性与架构评估 第2节. 系统架构评估 1. 概述 系统架构评估是在对架构分析、评估的基础上,对架构策略的选取进行决策。它利用数学或逻辑分析技术,针对系统的一致性、正确性、质量属性、规划结果等不同方面&#x…...
Spark UI中Shuffle dataSize 和shuffle bytes written 指标区别
背景 本文基于Spark 3.1.1 目前在做一些知识回顾的时候,发现了一些很有意思的事情,就是Spark UI中ShuffleExchangeExec 的dataSize和shuffle bytes written指标是不一样的, 那么在AQE阶段的时候,是以哪个指标来作为每个Task分区大…...
Java——Map.getOrDefault方法详解
Java——Map.getOrDefault方法详解 Map.getOrDefault(Object key, V defaultValue)是Java中Map接口的一个方法,用于获取指定键对应的值,如果键不存在,则返回一个默认值。 该方法的签名如下: V getOrDefault(Object key, V defau…...
银河集团香港优才计划95分获批案例展示!看看是如何申请的?
银河集团香港优才计划95分获批案例展示!看看是如何申请的? 今天来分享一则银河集团香港优才计划获批案例!客户本科学历非名校、从事业务支援及人力资源行业,优才打分95分,这个条件可能在很多人的印象里,会觉…...
Python class中以`_`开头的类特殊方法
在学基础的时候没学到过(可能见过但是又忘了),在学习深度学习项目的时候遇见了很多; 以论文Multi-label learning from single positive label为例; 这些方法都是程序自行调用的,不需要(也不可以…...
2023云栖大会开幕:全球数万开发者参会,展现AI时代的云计算创新
10月31日,2023云栖大会在杭州开幕,大会吸引全球数万开发者参会。阿里巴巴集团董事会主席蔡崇信在致辞中表示,今年云栖大会主题回归“计算,为了无法计算的价值”,这也是2015年云栖大会的主题,当时云计算支撑…...
[量化投资-学习笔记004]Python+TDengine从零开始搭建量化分析平台-EMA均线
在之前的文章中用 Python 直接计算的 MA 均线,但面对 EMA 我认怂了。 PythonTDengine从零开始搭建量化分析平台-MA均线的多种实现方式 高数是我们在大学唯一挂过的科。这次直接使用 Pandas 库的 DataFrame.ewm 函数,便捷又省事。 并且用 Pandas 直接对之…...
KaiwuDB 获山东省工信厅“信息化应用创新优秀解决方案”奖
10月23日,山东省工信厅正式公示《2023年山东省信息化应用创新典型应用案例及优秀解决方案名单》,面向全省、全国重点推荐山东省技术水平先进、应用示范效果突出、产业带动性强的信息化解决方案及应用实践,对于进一步激发山东省信息技术产业创…...
Python-常用的量化交易代码片段
算法交易正在彻底改变金融世界。通过基于预定义标准的自动化交易,交易者可以以闪电般的速度和比以往更精确的方式执行订单。如果您热衷于深入了解算法交易的世界,本指南提供了帮助您入门的基本代码片段。从获取股票数据到回溯测试策略,我们都能满足您的需求! 1. 使用 YFina…...
Netty优化-rpc
Netty优化-rpc 1.3 RPC 框架1)准备工作 1.3 RPC 框架 1)准备工作 这些代码可以认为是现成的,无需从头编写练习 为了简化起见,在原来聊天项目的基础上新增 Rpc 请求和响应消息 Data public abstract class Message implements …...
【Docker 内核详解】cgroups 资源限制(一):概念、作用、术语
cgroups 资源限制(一):概念、作用、术语 1.cgroups 是什么2.cgroups 的作用3.cgroups 术语表 当谈论 Docker 时,常常会聊到 Docker 的实现方式。很多开发者都知道,Docker 容器本质上是宿主机上的进程(容器所…...
浅谈 React Hooks
React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止
<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet: https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...
《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...
P3 QT项目----记事本(3.8)
3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...
Element Plus 表单(el-form)中关于正整数输入的校验规则
目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入(联动)2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...
