Redis高级-主从复制相关操作
2.1 主从复制简介
2.1.1 高可用
首先我们要理解互联网应用因为其独有的特性我们演化出的三高架构
-  高并发 应用要提供某一业务要能支持很多客户端同时访问的能力,我们称为并发,高并发意思就很明确了 
-  高性能 性能带给我们最直观的感受就是:速度快,时间短 
-  高可用 
可用性:一年中应用服务正常运行的时间占全年时间的百分比,如下图:表示了应用服务在全年宕机的时间

我们把这些时间加在一起就是全年应用服务不可用的时间,然后我们可以得到应用服务全年可用的时间
4小时27分15秒+11分36秒+2分16秒=4小时41分7秒=16867秒
1年=3652460*60=31536000秒
可用性=(31536000-16867)/31536000*100%=99.9465151%
业界可用性目标5个9,即99.999%,即服务器年宕机时长低于315秒,约5.25分钟
2.1.2 主从复制概念
知道了三高的概念之后,我们想:你的“Redis”是否高可用?那我们要来分析单机redis的风险与问题
问题1.机器故障
- 现象:硬盘故障、系统崩溃
- 本质:数据丢失,很可能对业务造成灾难性打击
- 结论:基本上会放弃使用redis.
问题2.容量瓶颈
- 现象:内存不足,从16G升级到64G,从64G升级到128G,无限升级内存
- 本质:穷,硬件条件跟不上
- 结论:放弃使用redis
结论:
为了避免单点Redis服务器故障,准备多台服务器,互相连通。将数据复制多个副本保存在不同的服务器上,连接在一起,并保证数据是同步的。即使有其中一台服务器宕机,其他服务器依然可以继续提供服务,实现Redis的高可用,同时实现数据冗余备份。
多台服务器连接方案:
 
- 提供数据方:master
主服务器,主节点,主库主客户端
- 接收数据方:slave
从服务器,从节点,从库
从客户端
- 需要解决的问题:
数据同步(master的数据复制到slave中)
这里我们可以来解释主从复制的概念:
概念:主从复制即将master中的数据即时、有效的复制到slave中
特征:一个master可以拥有多个slave,一个slave只对应一个master
职责:master和slave各自的职责不一样
master:
写数据执行写操作时,将出现变化的数据自动同步到slave读数据(可忽略)
slave:
读数据写数据(禁止)
2.1.3 主从复制的作用
- 读写分离:master写、slave读,提高服务器的读写负载能力
- 负载均衡:基于主从结构,配合读写分离,由slave分担master负载,并根据需求的变化,改变slave的数 量,通过多个从节点分担数据读取负载,大大提高Redis服务器并发量与数据吞吐量
- 故障恢复:当master出现问题时,由slave提供服务,实现快速的故障恢复
- 数据冗余:实现数据热备份,是持久化之外的一种数据冗余方式
- 高可用基石:基于主从复制,构建哨兵模式与集群,实现Redis的高可用方案
2.2 主从复制工作流程
主从复制过程大体可以分为3个阶段
- 建立连接阶段(即准备阶段)
- 数据同步阶段
- 命令传播阶段(反复同步)

而命令的传播其实有4种,分别如下:

2.2.1 主从复制的工作流程(三个阶段)
2.2.1.1 阶段一:建立连接
建立slave到master的连接,使master能够识别slave,并保存slave端口号
流程如下:
- 步骤1:设置master的地址和端口,保存master信息
- 步骤2:建立socket连接
- 步骤3:发送ping命令(定时器任务)
- 步骤4:身份验证
- 步骤5:发送slave端口信息
至此,主从连接成功!
当前状态:
slave:保存master的地址与端口
master:保存slave的端口
总体:之间创建了连接的socket
 
 master和slave互联
接下来就要通过某种方式将master和slave连接到一起
方式一:客户端发送命令
slaveof masterip masterport
方式二:启动服务器参数
redis-server --slaveof masterip masterport
方式三:服务器配置(主流方式)
slaveof masterip masterport
slave系统信息
master_link_down_since_seconds
masterhost & masterport
master系统信息
uslave_listening_port(多个)
主从断开连接
断开slave与master的连接,slave断开连接后,不会删除已有数据,只是不再接受master发送的数据
slaveof no one
授权访问
master客户端发送命令设置密码
requirepass password
master配置文件设置密码
config set requirepass password
config get requirepass
slave客户端发送命令设置密码
auth password
slave配置文件设置密码
masterauth password
slave启动服务器设置密码
redis-server –a password
相关文章:
 
Redis高级-主从复制相关操作
2.1 主从复制简介 2.1.1 高可用 首先我们要理解互联网应用因为其独有的特性我们演化出的三高架构 高并发 应用要提供某一业务要能支持很多客户端同时访问的能力,我们称为并发,高并发意思就很明确了 高性能 性能带给我们最直观的感受就是:速…...
 
SPI总线设备驱动模型
SPI总线设备驱动模型 文章目录SPI总线设备驱动模型参考资料:一、平台总线设备驱动模型二、 数据结构2.1 SPI控制器数据结构2.2 SPI设备数据结构2.3 SPI设备驱动三、 SPI驱动框架3.1 SPI控制器驱动程序3.2 SPI设备驱动程序致谢参考资料: 内核头文件&…...
 
开发同事辞职,接手到垃圾代码怎么办?
小王新加入了一家公司,这家公司有点年头,所以连屎山都是发酵过的,味道很冲。和大多数时运不济的程序员一样,到了这种公司,做的大多数工作,就是修补这些祖传代码,为其添砖加瓦。每当被折腾的筋疲…...
 
gRPC简介
grpc简介 grpc介绍可以参考官网。无论是rpc还是grpc,可以这样理解,都知道过去使用的单单体架构,而在2011年5月威尼斯的一个软件架构会议上提出了微服务架构,围绕业务功能进行组织(organized around business capability)…...
 
《MySQL系列-InnoDB引擎25》表-InnoDB逻辑存储结构
InnoDB逻辑存储结构 从InnoDB存储引擎的逻辑存储结构看,所有数据都被逻辑地存放在一个空间中,称之为表空间(tablespace)。表空间又由段(segment)、区(extent)、页(page)组成。页在一些文档中有时也称为块(block),InnoDB存储引擎的逻辑存储结构…...
 
YOLOv8之C2f模块——与YOLOv5的C3模块对比
一、源码对比 YOLOv8完整工程代码下载:ultralytics/ultralytic C2f模块源码在ultralytics/nn/modules.py下,源码如下: class C2f(nn.Module):# CSP Bottleneck with 2 convolutionsdef __init__(self, c1, c2, n1, shortcutFalse, g1, e…...
动态规划实例——换零钱的方法数(C++详解版)
原写了 Java 版本的如何求解换钱的方法数,近期进行了一些细节上的补充,以及部分错误更正,将语言换为了 C 语言。 基础题目 假设你现在拥有不限量的 1 元、5 元、10 元面值纸币,路人甲希望找你换一些零钱,路人甲拿出的…...
linux c
射频驱动 管理硬件设备、分配系统资源 内核由中断服务程序 调度程序 内存管理程序 网络和进程间进程通信程序 linux支持动态加载内核模块 支持多处理smp机制 内核可以抢占preemptive linux系统拥有多个发行版,可能由一个组织 公司和个人发行 VGA兼容或者更…...
第十三章 系统错误消息 - 一般系统错误消息 S - Z
文章目录第十三章 系统错误消息 - 一般系统错误消息 S - Z第十三章 系统错误消息 - 一般系统错误消息 S - Z 错误代码描述<SUBSCRIPT>下标值不合法或Global引用过长。<SWIZZLE FAIL>打开了一个oref,然后试图在另一个无法引用的相关对象中进行搅拌。这可…...
 
移动web基础
初始缩小:布局视口大于视觉视口 初始放大:布局视口小于视觉视口 布局视口等于视觉视口(这种动作行为叫做理想视口) <meta name"viewport" content"width375" /> <meta name"viewport"…...
MyBatis和MyBatis_Plus有什么区别【面试常考题】
MyBatis和MyBatis_Plus的区别 MyBatis_Plus MyBatis_Plus 是一个 MyBatis 的增强工具,只是在 MyBatis 的基础上增强了却没有做改变,MyBatis-Plus支持所有MyBatis原生的特性,所有引入MyBatis-Plus不会对现有的MyBatis框架产生任何影响。 MyBa…...
 
华为OD机试用Python实现 -【统一限载货物数最小值】(2023-Q1 新题)
华为OD机试题 华为OD机试300题大纲统一限载货物数最小值题目描述输入描述输出描述说明示例一输入输出说明示例二输入输出说明Python 代码实现算法逻辑华为OD机试300题大纲 参加华为od机试,一定要注意不要完全背诵代码,需要理解之后模仿写出,通过率才会高。 华为 OD 清单查…...
Vue入门小练习
文章目录Hello VueVue文本指令Vue属性绑定Vue双向绑定Vue事件绑定Vue猜数字Vue简单计算器Vue简单计算器升级版Vue循环遍历Vue员工列表练习Vue小练习Vue显示隐藏相关使用一些简单的小案例来熟悉Vue的基本使用方法 Hello Vue <!DOCTYPE html> <html lang"en"…...
Oracle-09-集合运算符篇
2022年4月13日23:01:25 通过本章学习,您将可以:1、描述 SET 操作符2、将多个查询用 SET 操作符连接组成一个新的查询目录 🏆一、SET OPERATORS ⭐️1.1、UNION /UNION ALL ⭐️1.2、INSTERSECT ⭐️1.3、MINUS dz...
获取浏览器(服务端)请求中特定的Cookie
有必要解释一下HttpServletRequest接口,因为我们需要从它里面获取Cookie。 HttpServletRequest HttpServletRequest是一个Java接口,提供了访问HTTP请求信息的方法,例如HTTP方法、请求URI、头部、参数和会话属性。它是Java Servlet API的一部…...
 
c++11 标准模板(STL)(std::unordered_set)(九)
定义于头文件 <unordered_set>template< class Key, class Hash std::hash<Key>, class KeyEqual std::equal_to<Key>, class Allocator std::allocator<Key> > class unordered_set;(1)(C11 起)namespace pmr { templat…...
python实战应用讲解-【实战应用篇】文件操作(附python示例代码)
目录 知识储备 使用 python-libarchive-c 模块 创建压缩文件 解压文件 查看信息...
 
OpenCV-Python系列(二)—— 图像处理(灰度图、二值化、边缘检测、高斯模糊、轮廓检测)
一、【灰度图、二值化】 import cv2 img cv2.imread("lz2.png") gray_img cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 灰度图 # 二值化,(127,255)为阈值 retval,bit_img cv2.threshold(gray_img, 127, 255, cv2.THRESH_BINARY) cv2.imshow(photo1,im…...
 
ccc-台大林轩田机器学习基石-hw1
文章目录Question1-14Question15-PLAQuestion16-PLA平均迭代次数Question17-不同迭代系数的PLAQuestion18-Pocket_PLAQuestion19-PLA的错误率Question20-修改Pocket_PLA迭代次数Question1-14 对于有明确公式和定义的不需要使用到ml 智能系统在与环境的连续互动中学习最优行为策…...
 
hadoop03-MapReduce【尚硅谷】
大数据学习笔记 MapReduce 一、MapReduce概述 MapReduce是一个分布式运算程序的编程框架,是基于Hadoop的数据分析计算的核心框架。 MapReduce处理过程为两个阶段:Map和Reduce。 Map负责把一个任务分解成多个任务;Reduce负责把分解后多任务处…...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...
 
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
 
《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...
python如何将word的doc另存为docx
将 DOCX 文件另存为 DOCX 格式(Python 实现) 在 Python 中,你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是,.doc 是旧的 Word 格式,而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
 
C++ 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...
 
有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
#Uniapp篇:chrome调试unapp适配
chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器:Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...
【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论
路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中(图1): mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...
