当前位置: 首页 > news >正文

比SAM小60倍的分割一切模型:MobileSAM

1 MobileSAM

SAM就是一类处理图像分割任务的通用模型。与以往只能处理某种特定类型图片的图像分割模型不同,SAM可以处理所有类型的图像。

在SAM出现前,基本上所有的图像分割模型都是专有模型。比如,在医学领域,有专门分割核磁图像的人工智能模型,也有专门分割CT影像的人工智能模型。但这些模型往往只在分割专有领域内的图像时,才具有良好性能,而在分割其他领域的图像时往往性能不佳。

1.1 模型介绍

SAM是一种prompt-guided的视觉基础模型,用于从其背景中剪切出感兴趣的对象。自Meta研究团队发布SA项目以来,SAM因其令人印象深刻的零样本传输性能和与其他模型兼容的高度通用性而备受关注,用于高级视觉应用,如具有细粒度控制的图像编辑。

许多这样的用例需要在资源受限的边缘设备上运行,比如移动应用程序。今天分享中,我们的目标是通过用轻量级图像编码器取代重量级图像编码器,使SAM对移动友好。原始SAM文件中训练这种新SAM的方式会导致性能不令人满意,尤其是当可用的训练来源有限时。

我们发现,这主要是由图像编码器和掩模解码器的耦合优化引起的,因此提出了解耦蒸馏。具体地说,将原始SAM中的图像编码器ViT-H的知识提取到一个轻量级的图像编码器中,该编码器可以自动与原始SAM中的掩码解码器兼容。

 

训练可以在不到一天的时间内在单个GPU上完成,由此产生的轻量级SAM被称为MobileSAM,它比原始SAM小60多倍,但性能与原始SAM相当。就推理速度而言,MobileSAM每幅图像运行约10ms:图像编码器运行8ms,掩码解码器运行2ms。凭借卓越的性能和更高的通用性,我们的MobileSAM比并发的FastSAM小7倍,快4倍,更适合移动应用。

论文地址:https://arxiv.org/pdf/2306.14289.pdf

代码地址:https://github.com/ChaoningZhang/MobileSAM

1.2 新框架

  • Background on SAM

在这里,我们首先总结SAM的结构及其工作原理。SAM由一个基于ViT的图像编码器和一个提示引导掩码解码器组成。图像编码器将图像作为输入并生成嵌入,然后将嵌入提供给掩码解码器。掩码解码器生成一个掩码,根据点(或框)等提示从背景中剪切出任何对象。此外,SAM允许为同一提示生成多个掩码,以解决模糊性问题,这提供了宝贵的灵活性。考虑到这一点,这项工作保持了SAM的流水线,首先采用基于ViT的编码器来生成图像嵌入,然后采用提示引导解码器来生成所需的掩码。这条管道是为“分段任何东西”而优化设计的,可用于“分段所有东西”的下游任务。

SAM的耦合知识蒸馏。左图表示完全耦合蒸馏,右图表示半耦合蒸馏。

  • Project goal

该项目的目标是生成一个移动友好型SAM(MobileSAM),以轻量级的方式实现令人满意的性能,并且比原始SAM快得多。原始SAM中的提示引导掩码解码器的参数小于4M,因此被认为是轻量级的。给定编码器处理的图像嵌入,如他们的公开演示中所示,SAM可以在资源受限的设备中工作,因为掩码解码器是轻量级的。然而,原始SAM中的默认图像编码器是基于ViT-H的,具有超过600M的参数,这是非常重量级的,并使整个SAM管道与移动设备不兼容。因此,获得移动友好SAM的关键在于用轻量级的图像编码器取代重量级的图像编码器,这也自动保持了原始SAM的所有功能和特性。

 

以ViT-B为图像编码器的SAM的耦合蒸馏和解耦蒸馏的比较。与耦合蒸馏相比,解耦蒸馏性能更好,所需计算资源少于1%。

1.3 实验

下图给出了point与bbox提示词下MobileSAM与原生SAM的结果对比,可以看到:MobileSAM可以取得令人满意的Mask预测结果。

下图从Segment everything角度对比了SAM、FastSAM以及MobileSAM三个模型,可以看到:

  • MobileSAM与原生SAM结果对齐惊人的好,而FastSAM会生成一些无法满意的结果
  • FastSAM通常生成非平滑的边缘,而SAM与MobileSAM并没有该问题

 

MobileSAM在所有方面都优于FastSAM

SAM原始论文的标题是“Segment anything”,而不是“segment everything”。如SAM中所强调的,SAM执行可prompt分割的任务,该任务“在给定任何分割prompt的情况下返回有效的分割Mask”。

prompt的作用是指定要在图像中分割的内容。理论上,只要正确设置prompt,任何目标都可以被分割,因此,它被称为“Segment anything”。相比之下,“segment everything”本质上是目标建议生成,对此不需要prompt。在SAM中,选择“segment everything”(目标建议生成)作为下游任务之一,以演示其零样本传输性能。

总之,“Segment anything”解决了任何目标的可prompt分割的基础任务,而“segment everything”解决了为所有目标生成Mask建议的下游任务不一定需要prompt,FastSAM以无prompt的方式直接用YOLO v8生成Mask建议。为了实现可prompt分割,设计了一种映射算法来从提议Mask集中选择Mask。

2 运行环境与实战

2.1 conda环境准备

conda环境准备详见:annoconda

2.2 运行环境安装

git clone https://github.com/ChaoningZhang/MobileSAM
cd MobileSAMconda create -n mobilesam python=3.9
conda activate mobilesampip install -e .
pip install gradiopip install torchvision==0.15.1
pip install timm
pip install opencv-python

2.3 模型下载

下载地址:https://huggingface.co/spaces/dhkim2810/MobileSAM/tree/main

2.4 运行

cd app修改app.py中的代码demo.launch(server_name='192.168.1.160')  #地址为自己的内网IPpython app.py

相关文章:

比SAM小60倍的分割一切模型:MobileSAM

1 MobileSAM SAM就是一类处理图像分割任务的通用模型。与以往只能处理某种特定类型图片的图像分割模型不同,SAM可以处理所有类型的图像。 在SAM出现前,基本上所有的图像分割模型都是专有模型。比如,在医学领域,有专门分割核磁图…...

版本控制系统-SVN

SVN Apache Subversion 通常被缩写成 SVN,是一个开放源代码的版本控制系统。 官网:https://subversion.apache.org 资料:https://svnbook.red-bean.com、https://www.runoob.com/svn/svn-tutorial.html 下载:https://sourceforg…...

【电路笔记】-串联RLC电路分析

串联RLC电路分析 文章目录 串联RLC电路分析1、概述2、瞬态响应3、AC响应4、RCL和CLR配置5、结论 电阻器 、电感器 (L) 和电容器 © 是电子器件中的三个基本无源元件。 它们的属性和行为已在交流电阻、交流电感和交流电容文章中详细介绍。 在本文中,我们将重点讨…...

大数据毕业设计选题推荐-家具公司运营数据分析平台-Hadoop-Spark-Hive

✨作者主页:IT研究室✨ 个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Python…...

【触想智能】工业显示器上市前的检测项目分享

工业显示器在上市前,需要做一项重要的工作,那就是工业显示器出厂前的产品可靠性检测。 工业显示器选择的测试项目相比商用端更为严格,常见的性能测试项目包括高温老化、防尘防水、电磁静电干扰、防摔防撞等,在工业级应用领域&…...

Vue使用epubjs电子书

npmjs: https://www.npmjs.com/package/epubjs 在线电子书转换器 安装: npm i epubjs 简单封装: src/hooks/ import Epub from "epubjs"; import type { Book, Rendition } from epubjs import type { BookOptions } from epubjs/types…...

python机器学习——决策树

决策树 # 模块导入 from sklearn.tree import ExtraTreeRegressor as ETR, DecisionTreeRegressor as DTRExtraTreeRegressor和DecisionTreeRegressor是scikit-learn库中的两种回归模型,用于拟合和预测连续型目标变量。 决策树是一种基于树结构的机器学习算法&…...

__attribute__((__used__)) 和 __attribute__((__section__(“*“ “*“)))的使用

见&#xff1a;haproxy代码 C语言注册函数和调用函数&#xff0c;便于模块化开发和编程。 #include <stdio.h>#ifdef __APPLE__ #define HA_SECTION(s) __attribute__((__section__("__DATA, " s))) #define HA_SECTION_START(s) __asm("…...

webgoat-(A1)SQL Injection

SQL Injection (intro) SQL 命令主要分为三类&#xff1a; 数据操作语言 &#xff08;DML&#xff09;DML 语句可用于请求记录 &#xff08;SELECT&#xff09;、添加记录 &#xff08;INSERT&#xff09;、删除记录 &#xff08;DELETE&#xff09; 和修改现有记录 &#xff…...

Flink的API分层、架构与组件原理、并行度、任务执行计划

Flink的API分层 Apache Flink的API分为四个层次&#xff0c;每个层次都提供不同的抽象和功能&#xff0c;以满足不同场景下的数据处理需求。下面是这四个层次的具体介绍&#xff1a; CEP API&#xff1a;Flink API 最底层的抽象为有状态实时流处理。其抽象实现是Process Functi…...

Transformer:开源机器学习项目,上千种预训练模型 | 开源日报 No.66

huggingface/transformers Stars: 113.5k License: Apache-2.0 这个项目是一个名为 Transformers 的开源机器学习项目&#xff0c;它提供了数千种预训练模型&#xff0c;用于在文本、视觉和音频等不同领域执行任务。该项目主要功能包括&#xff1a; 文本处理&#xff1a;支持…...

Corel VideoStudio 会声会影2024剪辑中间的视频怎么删 剪辑中音乐太长怎么办

我很喜欢视频剪辑软件Corel VideoStudio 会声会影2024&#xff0c;因为它使用起来很有趣。它很容易使用&#xff0c;但仍然给你很多功能和力量。视频剪辑软件Corel VideoStudio 会声会影2023让我与世界分享我的想法&#xff01;“这个产品的功能非常多&#xff0c;我几乎没有触…...

数据结构初阶---复杂度的OJ例题

复杂度的OJ例题 一、消失的数字1.思路一2.思路二3.思路三 二、旋转数组1.思路一2.思路二3.思路三 一、消失的数字 数组nums包含从0到n的所有整数&#xff0c;但其中缺了一个。请编写代码找出那个缺失的整数。你有办法在O(N)时间内完成吗&#xff1f; 链接&#xff1a;力扣&…...

Prometheus|云原生|grafana的admin用户密码重置备忘记录

很久很久以前部署的一个Prometheus套装里的grafana密码给忘记了&#xff0c;回忆总是很痛苦&#xff0c;因此还是在这里简单的记录一下&#xff0c;下次就不需要满世界反翻找了。 一&#xff0c; 改库重置密码为admin grafana密码存放在哪里的&#xff1f; 必须说明一下&am…...

[hive]中的字段的数据类型有哪些

Hive中提供了多种数据类型用于定义表的字段。以下是Hive中常见的数据类型&#xff1a; 布尔类型&#xff08;Boolean&#xff09;&#xff1a;用于表示true或false。 字符串类型&#xff08;String&#xff09;&#xff1a;用于表示文本字符串。 整数类型&#xff08;Intege…...

第六章 树【数据结构和算法】【精致版】

第六章 树【数据结构和算法】【精致版】 前言版权第六章 树6.1 应用实例6.2 树的概念6.2.1树的定义与表示6.2.2 树的基本术语6.2.3树的抽象数据类型定义 6.3 二叉树6.3.1二叉树的定义6.3.2 二叉树的性质6.3.3 二叉树的存储 6.4 二叉树的遍历6.4.1 二叉树的遍历及递归实现**1-二…...

第九章:Dynamic Symbolic Execution

文章目录 Dynamic Symbolic Executionoverviewmotivationdynamic symbolic execution常用的其他技术对比Random Testingsymbolic executionCombined static and symbolic - Dynamic Execution (DSE)step1: 初始化两个具体的值 x,ystep2: 根据定义得出 z 的 concrete value 和 s…...

在搜索引擎中屏蔽csdn

csdn是一个很好的技术博客&#xff0c;里面信息很丰富&#xff0c;我也喜欢在csdn上做技术笔记。 但是CSDN体量太大&#xff0c;文章质量良莠不齐。当在搜索引擎搜索技术问题时&#xff0c;搜索结果中CSDN的内容占比太多&#xff0c;导致难以从其他优秀的博客平台中获取信息。因…...

Linux开发工具的使用(vim、gcc/g++ 、make/makefile)

文章目录 一 &#xff1a;vim1:vim基本概念2:vim的常用三种模式3:vim三种模式的相互转换4:vim命令模式下的命令集- 移动光标-删除文字-剪切/删除-复制-替换-撤销和恢复-跳转至指定行 5:vim底行模式下的命令集 二:gcc/g1:gcc/g的作用2:gcc/g的语法3:预处理4:编译5:汇编6:链接7:函…...

MySQL(10):创建和管理表

基础知识 在 MySQL 中&#xff0c;一个完整的数据存储过程总共有 4 步&#xff0c;分别是&#xff1a;创建数据库、确认字段、创建数据表、插入数据。 要先创建一个数据库&#xff0c;而不是直接创建数据表&#xff1a;从系统架构的层次上看&#xff0c;MySQL 数据库系统从大到…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes&#xff08;简称K8s&#xff09;中&#xff0c;Ingress是一个API对象&#xff0c;它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress&#xff0c;你可…...

循环冗余码校验CRC码 算法步骤+详细实例计算

通信过程&#xff1a;&#xff08;白话解释&#xff09; 我们将原始待发送的消息称为 M M M&#xff0c;依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)&#xff08;意思就是 G &#xff08; x ) G&#xff08;x) G&#xff08;x) 是已知的&#xff09;&#xff0…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

PL0语法,分析器实现!

简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...

【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统

目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索&#xff08;基于物理空间 广播范围&#xff09;2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用

一、方案背景​ 在现代生产与生活场景中&#xff0c;如工厂高危作业区、医院手术室、公共场景等&#xff0c;人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式&#xff0c;存在效率低、覆盖面不足、判断主观性强等问题&#xff0c;难以满足对人员打手机行为精…...

MySQL:分区的基本使用

目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区&#xff08;Partitioning&#xff09;是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分&#xff08;分区&#xff09;可以独立存储、管理和优化&#xff0c;…...

《Docker》架构

文章目录 架构模式单机架构应用数据分离架构应用服务器集群架构读写分离/主从分离架构冷热分离架构垂直分库架构微服务架构容器编排架构什么是容器&#xff0c;docker&#xff0c;镜像&#xff0c;k8s 架构模式 单机架构 单机架构其实就是应用服务器和单机服务器都部署在同一…...

【堆垛策略】设计方法

堆垛策略的设计是积木堆叠系统的核心&#xff0c;直接影响堆叠的稳定性、效率和容错能力。以下是分层次的堆垛策略设计方法&#xff0c;涵盖基础规则、优化算法和容错机制&#xff1a; 1. 基础堆垛规则 (1) 物理稳定性优先 重心原则&#xff1a; 大尺寸/重量积木在下&#xf…...