力扣370周赛 -- 第三题(树形DP)

该题的方法,也有点背包的意思,如果一些不懂的朋友,可以从背包的角度去理解该树形DP
问题
题解主要在注释里
//该题是背包问题+树形dp问题的结合版,在树上解决背包问题
//背包问题就是选或不选当前物品
//本题求的是最大分数
//先转成背包问题理解
//从n个物品当中选出最大分数
//再转成有限制版的
//从n个物品当中选出最大分数,并且血量是健康的
//再转成树形DP去理解该问题
//树是健康就是,在任意一条树的路径下(到叶子节点的任意一条路径),能确保至少有一个物品不被选
//从树上前n个物品当中选出一些物品,并且保证树是健康的
//从树上前i个物品当中选出保证树是健康的前提下,能选出的不超过i个物品的最大分数
//然后再去拓展这个定义
//结合树形DP的经验
//以当前u为根节点的子树,在保证树是健康的前提下,能选出的最大分数
//那么就有了推导过程,从下往上推导,也就是从最小子树往上推导到最大子树最大分数
//那么最好的做法就是利用递归的特性,回溯的时候进行推导
//这题中我们直接找出最大分数,其实是比较难的,我们用初中的思想
//正难则反,既然找最大分数(有个不选的)比较难,那么我们可以用
//找个最小分数(选上的),那么就变得比较简单了
//状态定义
//首先我们找最小的,以树形dp为经验推导出
//我们以u为根节点的子树,总和最小的分数(并且是保证健康的,在一条路径上最少也得选一个)
//定义为min_val[u]
//那么怎么算出最大分数呢,既然有min_val[u],那么就有,以当前u为根节点的子树节点总和sum_val[u]
//那么相减sum_val[u] - min_val[u]就等于最大分数了
//那么如何推导这两个定义的数组呢?
//树形dp类型问题,最好首先用dfs,边回溯边推导数组
class Solution {
public:void dfs_sum_val(int u,int fa,vector<int>& val,vector<vector<int>>& g,vector<long long>& sum_val){sum_val[u] = val[u];for(auto e:g[u])if(fa != e)//不要往上计算,我们是从下往上推导{dfs_sum_val(e,u,val,g,sum_val);//回溯计算sum_val[u] += sum_val[e];}//这个dfs我们可以算作一个小题,就是计算出每个点为根节点的子树的总和}void dfs_min_val(int u,int fa,vector<int>& val,vector<vector<int>>& g,vector<long long>& min_val){long long min_res = 0;min_val[u] = (long long)val[u];for(auto& e:g[u]){if(fa != e){dfs_min_val(e,u,val,g,min_val);min_res += min_val[e];}}if(min_res) min_val[u] = min((long long)min_val[u],min_res);}long long maximumScoreAfterOperations(vector<vector<int>>& edges, vector<int>& values) {//该题是背包问题+树形dp问题的结合版,在树上解决背包问题//背包问题就是选或不选当前物品//本题求的是最大分数//先转成背包问题理解//从n个物品当中选出最大分数//再转成有限制版的//从n个物品当中选出最大分数,并且血量是健康的//再转成树形DP去理解该问题//树是健康就是,在任意一条树的路径下(到叶子节点的任意一条路径),能确保至少有一个物品不被选//从树上前n个物品当中选出一些物品,并且保证树是健康的//从树上前i个物品当中选出保证树是健康的前提下,能选出的不超过i个物品的最大分数//然后再去拓展这个定义//结合树形DP的经验//以当前u为根节点的子树,在保证树是健康的前提下,能选出的最大分数//那么就有了推导过程,从下往上推导,也就是从最小子树往上推导到最大子树最大分数//那么最好的做法就是利用递归的特性,回溯的时候进行推导//这题中我们直接找出最大分数,其实是比较难的,我们用初中的思想//正难则反,既然找最大分数(有个不选的)比较难,那么我们可以用//找个最小分数(选上的),那么就变得比较简单了//状态定义//首先我们找最小的,以树形dp为经验推导出//我们以u为根节点的子树,总和最小的分数(并且是保证健康的,在一条路径上最少也得选一个)//定义为min_val[u]//那么怎么算出最大分数呢,既然有min_val[u],那么就有,以当前u为根节点的子树节点总和sum_val[u]//那么相减sum_val[u] - min_val[u]就等于最大分数了//那么如何推导这两个定义的数组呢?//树形dp类型问题,最好首先用dfs,边回溯边推导数组int edge_size = edges.size();vector<vector<int>> g(values.size() + 110);for(int i = 0;i < edge_size;i++){int a = edges[i][0];int b = edges[i][1];g[a].push_back(b);g[b].push_back(a);}vector<long long> sum_val(21000);vector<long long> min_val(21000,0x3f3f3f3f);//预处理出来sum_val数组dfs_sum_val(0,-1,values,g,sum_val);//预处理出来min_val数组dfs_min_val(0,-1,values,g,min_val);return sum_val[0] - min_val[0];}
};
相关文章:
力扣370周赛 -- 第三题(树形DP)
该题的方法,也有点背包的意思,如果一些不懂的朋友,可以从背包的角度去理解该树形DP 问题 题解主要在注释里 //该题是背包问题树形dp问题的结合版,在树上解决背包问题 //背包问题就是选或不选当前物品 //本题求的是最大分数 //先转…...
GPT学习笔记
百度的文心一言 阿里的通义千问 通过GPT能力,提升用户体验和产品力 GPT的出现是AI的iPhone时刻。2007年1月9日,第一代iPhone发布,开启移动互联网时代。新一轮的产业革命。 GPT模型发展时间线: Copilot - 副驾驶 应用…...
Apex的addError()显示的消息中实现换行
直接用‘<br/>’是无效的,因为addError默认不转义HTML符号,如果需要转义,应该将第二个参数escape设置为false。不过即使设置了也只对classic页面生效,lightning页面还是无法转义。 官方文档: 参考资料…...
STM32中微秒延时的实现方式
STM32中微秒延时的实现方式 0.前言一、裸机实现方式二、FreeRTOS实现方式三、定时器实现(通用)4、总结 0.前言 最近在STM32驱动移植过程中需要用到微秒延时来实现一些外设的时序,由于网上找到的驱动方法良莠不齐,笔者在实现时序过…...
2005-2021年全国各省家庭承包耕地面积和家庭承包耕地流转总面积数据(无缺失)
2005-2021年全国各省家庭承包耕地面积和家庭承包耕地流转总面积数据 1、时间:2005-2021年 2、来源:农村经营管理统计NB 3、指标:家庭承包经营耕地面积、家庭承包耕地流转总面积(单位:亩) 4、范围&#…...
【六、http】go的http的客户端重定向
一、http的重定向 重定向过程:客户浏览器发送http请求----》web服务器接受后发送302状态码响应及对应新的location给客户浏览器–》客户浏览器发现是302响应,则自动再发送一个新的http请求,请求url是新的location地址----》服务器根据此请求寻…...
AI:61-基于深度学习的草莓病害识别
🚀 本文选自专栏:AI领域专栏 从基础到实践,深入了解算法、案例和最新趋势。无论你是初学者还是经验丰富的数据科学家,通过案例和项目实践,掌握核心概念和实用技能。每篇案例都包含代码实例,详细讲解供大家学习。 📌📌📌在这个漫长的过程,中途遇到了不少问题,但是…...
idea文件比对
idea文件比对 1.项目内的文件比对2.项目间的文件比对3. 剪切板对比4. 版本历史(不同分支和不同commit)对比 1.项目内的文件比对 在项目中选择好需要比对的文件(类),然后选择Compare Files Mac下的快捷键是Commandd, 这样的比对像是git冲突解决一样 …...
重磅发布|美创科技新一代 数据安全管理平台(DSM Cloud)全新升级
重磅发布 新一代 数据安全管理平台(DSM Cloud) 美创科技新一代 数据安全管理平台(简称:DSM Cloud)全新升级,正式发布。 在业务上云飞速发展过程中,快速应对数据激增,同时有效保障数…...
比SAM小60倍的分割一切模型:MobileSAM
1 MobileSAM SAM就是一类处理图像分割任务的通用模型。与以往只能处理某种特定类型图片的图像分割模型不同,SAM可以处理所有类型的图像。 在SAM出现前,基本上所有的图像分割模型都是专有模型。比如,在医学领域,有专门分割核磁图…...
版本控制系统-SVN
SVN Apache Subversion 通常被缩写成 SVN,是一个开放源代码的版本控制系统。 官网:https://subversion.apache.org 资料:https://svnbook.red-bean.com、https://www.runoob.com/svn/svn-tutorial.html 下载:https://sourceforg…...
【电路笔记】-串联RLC电路分析
串联RLC电路分析 文章目录 串联RLC电路分析1、概述2、瞬态响应3、AC响应4、RCL和CLR配置5、结论 电阻器 、电感器 (L) 和电容器 © 是电子器件中的三个基本无源元件。 它们的属性和行为已在交流电阻、交流电感和交流电容文章中详细介绍。 在本文中,我们将重点讨…...
大数据毕业设计选题推荐-家具公司运营数据分析平台-Hadoop-Spark-Hive
✨作者主页:IT研究室✨ 个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Python…...
【触想智能】工业显示器上市前的检测项目分享
工业显示器在上市前,需要做一项重要的工作,那就是工业显示器出厂前的产品可靠性检测。 工业显示器选择的测试项目相比商用端更为严格,常见的性能测试项目包括高温老化、防尘防水、电磁静电干扰、防摔防撞等,在工业级应用领域&…...
Vue使用epubjs电子书
npmjs: https://www.npmjs.com/package/epubjs 在线电子书转换器 安装: npm i epubjs 简单封装: src/hooks/ import Epub from "epubjs"; import type { Book, Rendition } from epubjs import type { BookOptions } from epubjs/types…...
python机器学习——决策树
决策树 # 模块导入 from sklearn.tree import ExtraTreeRegressor as ETR, DecisionTreeRegressor as DTRExtraTreeRegressor和DecisionTreeRegressor是scikit-learn库中的两种回归模型,用于拟合和预测连续型目标变量。 决策树是一种基于树结构的机器学习算法&…...
__attribute__((__used__)) 和 __attribute__((__section__(“*“ “*“)))的使用
见:haproxy代码 C语言注册函数和调用函数,便于模块化开发和编程。 #include <stdio.h>#ifdef __APPLE__ #define HA_SECTION(s) __attribute__((__section__("__DATA, " s))) #define HA_SECTION_START(s) __asm("…...
webgoat-(A1)SQL Injection
SQL Injection (intro) SQL 命令主要分为三类: 数据操作语言 (DML)DML 语句可用于请求记录 (SELECT)、添加记录 (INSERT)、删除记录 (DELETE) 和修改现有记录 ÿ…...
Flink的API分层、架构与组件原理、并行度、任务执行计划
Flink的API分层 Apache Flink的API分为四个层次,每个层次都提供不同的抽象和功能,以满足不同场景下的数据处理需求。下面是这四个层次的具体介绍: CEP API:Flink API 最底层的抽象为有状态实时流处理。其抽象实现是Process Functi…...
Transformer:开源机器学习项目,上千种预训练模型 | 开源日报 No.66
huggingface/transformers Stars: 113.5k License: Apache-2.0 这个项目是一个名为 Transformers 的开源机器学习项目,它提供了数千种预训练模型,用于在文本、视觉和音频等不同领域执行任务。该项目主要功能包括: 文本处理:支持…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...
html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码
目录 一、👨🎓网站题目 二、✍️网站描述 三、📚网站介绍 四、🌐网站效果 五、🪓 代码实现 🧱HTML 六、🥇 如何让学习不再盲目 七、🎁更多干货 一、👨…...
管理学院权限管理系统开发总结
文章目录 🎓 管理学院权限管理系统开发总结 - 现代化Web应用实践之路📝 项目概述🏗️ 技术架构设计后端技术栈前端技术栈 💡 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 🗄️ 数据库设…...
MFC 抛体运动模拟:常见问题解决与界面美化
在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...
vulnyx Blogger writeup
信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面,gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress,说明目标所使用的cms是wordpress,访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...
PHP 8.5 即将发布:管道操作符、强力调试
前不久,PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5!作为 PHP 语言的又一次重要迭代,PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是,借助强大的本地开发环境 ServBay&am…...
什么是VR全景技术
VR全景技术,全称为虚拟现实全景技术,是通过计算机图像模拟生成三维空间中的虚拟世界,使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验,结合图文、3D、音视频等多媒体元素…...
