Danswer 接入 Llama 2 模型 | 免费在 Google Colab 上托管 Llama 2 API
一、前言
前面在介绍本地部署免费开源的知识库方案时,已经简单介绍过 Danswer《Danswer 快速指南:不到15分钟打造您的企业级开源知识问答系统》,它支持即插即用不同的 LLM 模型,可以很方便的将本地知识文档通过不同的连接器接入到 Danswer,然后实现本地基于知识库的语义检索。它是完全开源的(MIT 许可证)并且免费使用。
1.1、为什么选择 Danswer
默认设置下,Danswer 使用 OpenAI 的 GPT 系列模型,由于很多时候我们因为数据隐私问题需要在本地部署离线的知识库系统,需要接入本地开源的模型,今天本文将简单介绍下如何使用开源模型 Llama 2 接入 Danswer。
至于为什么选择 Danswer,简单啰嗦一下,更具体的信息可以访问官方文档:
-
它是完全开源的(MIT 许可证)并且免费使用。
-
允许您即插即用不同的 LLM 模型,例如 GPT、HuggingFace、GPT4All、Llama cpp,甚至自定义自托管模型。
-
具有开箱即用的关键功能,如文档访问控制、前端 UI、管理仪表板、轮询文档更新和灵活的部署选项。
-
与 Slack、GitHub、GoogleDrive 等其他工具的连接器的不错列表。
1.2、为什么选择 Llama 2
自从 Meta 公司发布了最新的 LLaMA 2 模型并且开源之后,在LLM领域掀起了一阵不小的浪潮,至少从各种排行榜和评估结果来看,Llama 2 在开源界要优于其它的产品,它击败了 Falcon-40B(之前最好的开源基础模型),与 GPT-3.5 相当,仅低于 GPT-4 和 PALM 2(均为闭源模型,分别由 OpenAI 和 Google 拥有)。

从以上排行榜不难看出,基本上整个列表大部分的开源模型都是由 Llama 2 衍生品组成的。
二、在 Google Colab 上托管 Llama 2 模型
Llama 2 型号有 3 种不同尺寸:7B、13B 和 70B 参数。700 亿参数版本需要多个 GPU,因此无法免费托管。在 13B 和 7B 版本中,13B 版本更强大,但需要一些压缩(量化或降低浮点精度)才能适合单个中档 GPU。幸运的是,Llama cpp 库使这变得相当简单。这里我们将以 Llama 2 13B量化模型来进行演示。
在开始之前,请确保在 Google Colab 上设置了 T4 GPU 运行时
2.1、安装依赖
-
运行 FastAPI 服务器所需的依赖项
-
通过 Ngrok 创建公共模型服务 URL 所需的依赖项
-
运行 Llama2 13B(包括量化)所需的依赖项
# 构建 Llama cpp
!CMAKE_ARGS="-DLLAMA_CUBLAS=on" FORCE_CMAKE=1 pip install llama-cpp-python# 如果出现依赖解析器的错误提示,可以忽略
!pip install fastapi[all] uvicorn python-multipart transformers pydantic tensorflow# 这将在 Google Colab 实例中下载并设置 Ngrok 可执行文件
!wget https://bin.equinox.io/c/4VmDzA7iaHb/ngrok-stable-linux-amd64.zip
!unzip -o ngrok-stable-linux-amd64.zip
Ngrok 用于通过公共 URL 访问 FastAPI 服务器。
用户需要创建一个免费账户并提供他们的身份验证令牌以使用 Ngrok。免费版本只允许一个本地隧道,并且身份验证令牌用于跟踪此使用限制。

在 Ngrok 设置页面上获取 Auth token,如图中红框所示
# https://dashboard.ngrok.com/signup
!./ngrok authtoken <YOUR-NGROK-TOKEN-HERE>
2.2、创建 FastAPI 应用
这里提供了一个与 Llama 2 模型交互的 API。可以根据需要在下面的代码中更改模型版本。在这个演示示例中,我们将使用 130 亿参数版本,该版本经过微调以进行指令(聊天)跟随。尽管进行了压缩,但它仍然比 70 亿变体更强大。
%%writefile app.py
from typing import Anyfrom fastapi import FastAPI
from fastapi import HTTPException
from pydantic import BaseModel
from huggingface_hub import hf_hub_download
from llama_cpp import Llama
import tensorflow as tf# 在 T4 GPU 上拟合 Llama2-13B 需要 GGML 模型
GENERATIVE_AI_MODEL_REPO = "TheBloke/Llama-2-13B-chat-GGML"
GENERATIVE_AI_MODEL_FILE = "llama-2-13b-chat.ggmlv3.q5_1.bin"model_path = hf_hub_download(repo_id=GENERATIVE_AI_MODEL_REPO,filename=GENERATIVE_AI_MODEL_FILE
)llama2_model = Llama(model_path=model_path,n_gpu_layers=64,n_ctx=2000
)# 测试推理
print(llama2_model(prompt="Hello ", max_tokens=1))app = FastAPI()# 这里定义了端点所期望的数据 JSON 格式,根据需要进行更改
class TextInput(BaseModel):inputs: strparameters: dict[str, Any] | None@app.get("/")
def status_gpu_check() -> dict[str, str]:gpu_msg = "Available" if tf.test.is_gpu_available() else "Unavailable"return {"status": "I am ALIVE!","gpu": gpu_msg}@app.post("/generate/")
async def generate_text(data: TextInput) -> dict[str, str]:try:params = data.parameters or {}response = llama2_model(prompt=data.inputs, **params)model_out = response['choices'][0]['text']return {"generated_text": model_out}except Exception as e:raise HTTPException(status_code=500, detail=str(e))
2.3、启动 FastAPI 服务器
由于需要下载模型并将其加载到 GPU 上,初始运行时间会很长。
注意:中断 Google Colab 运行时会发送 SIGINT 并停止服务器。
# 此单元格很快完成,因为它只需要启动服务器
# 服务器将开始下载模型,并需要一段时间才能启动
# 约 5 分钟
!uvicorn app:app --host 0.0.0.0 --port 8000 > server.log 2>&1 &
检查 server.log 日志以查看进度。在继续之前,请等待模型加载完成并使用下一个单元格进行检查。
# 如果看到 "Failed to connect",那是因为服务器仍在启动中
# 等待模型下载完成和服务器完全启动
# 检查 server.log 文件以查看状态
!curl localhost:8000
2.4、使用 Ngrok 为 FastAPI 服务器创建公共 URL。
重要提示:如果您通过电子邮件创建了一个账户,请验证您的电子邮件,否则下面的两个单元格将无法正常工作。
如果您通过 Google 或 GitHub 账户注册,那就没问题了。
# 这将启动 Ngrok 并创建一个公共 URL。
from IPython import get_ipython
get_ipython().system_raw('./ngrok http 8000 &')
检查下一个单元格生成的 URL,它应该显示 FastAPI 服务器正在运行,并且 GPU 可用。
要访问模型的端点,只需在 URL 后面添加 /generate。
curl --location --request POST '<REPLACE-WITH-YOUR-NGROK-PUBLIC-URL>/generate' \
--header 'Content-Type: application/json' \
--data-raw '{"inputs": "请介绍下 Danswer 如何接入 Llama 2 模型?","parameters": {"temperature": 0.0,"max_tokens": 25}
}'
# 获取公共 URL
# 如果无法正常工作,请确保您已验证您的电子邮件。
# 然后再次运行上一个代码单元格和这个代码单元格。
!curl -s http://localhost:4040/api/tunnels | python3 -c "import sys, json; print(json.load(sys.stdin)['tunnels'][0]['public_url'])"
2.5、关闭服务
要关闭进程,请在一个新的单元格中运行以下命令:
!pkill uvicorn
!pkill ngrok
[Google Colab 代码]
https://colab.research.google.com/drive/1HhqGGzV-q1m0igdhpGt5Wmf8VmDiyIcn#scrollTo=liqVEsGfZPse
三、在 Danswer 中接入 Llama 2 模型
Danswer 可以通过 REST 请求向任意模型服务器发出请求。可以选择传入访问令牌。要自定义请求格式和响应处理,可能需要更新/重建 Danswer 容器。
3.1、部署 Danswer
Danswer 提供 Docker 容器,可以轻松部署在任何云上,无论是在单个实例上还是通过 Kubernetes。在本演示中,我们将使用 Docker Compose 在本地运行 Danswer。
首先拉去 danswer 代码:
git clone https://github.com/danswer-ai/danswer.git
接下来导航到部署目录:
cd danswer/deployment/docker_compose
Danswer 默认使用的模型是 GPT-3.5-Turbo,如果想使用开源的如 Llama 2 模型API,通过创建 .env 文件来覆盖一些默认值(针对 Linux 显示),将 Danswer 配置为使用新的 Llama 2 端点:
GEN_AI_MODEL_PROVIDER=custom
GEN_AI_API_ENDPOINT=<REPLACE-WITH-YOUR-NGROK-PUBLIC-URL>/generate
3.3、添加文档到 Danswer
这里我们将 Danswer 文档网站建立索引。只需要在Web连接器中添加文档URL地址即可。

3.4、从 Danswer 获取答案
单击 Danswer 徽标返回主页,现在您可以询问有关新索引文档的问题。

四、总结
本文主要介绍了如何在Google Colab上托管Llama 2模型,并将其接入Danswer。Danswer是一个开源的知识问答系统,支持不同的LLM模型,可以方便地将本地知识文档接入到Danswer,实现基于知识库的语义检索。
虽然使用 Google Colab 可以免费托管您的 LLM,但是需要注意以下几点:
-
Google Colab 更适用于开发目的,如果您想要永久端点,可能需要投资专用硬件,因为在一段时间不活动后,Google Colab 将回收实例。也可考虑在 HF 上托管。
-
免费套餐中不支持高端 GPU 如 A100。
-
在免费套餐中,每个会话最多只能申请 12 小时的实例。
五、References
[1] Danswer 代码:https://github.com/danswer-ai/danswer
[2] Danswer 文档:https://docs.danswer.dev/
相关文章:
Danswer 接入 Llama 2 模型 | 免费在 Google Colab 上托管 Llama 2 API
一、前言 前面在介绍本地部署免费开源的知识库方案时,已经简单介绍过 Danswer《Danswer 快速指南:不到15分钟打造您的企业级开源知识问答系统》,它支持即插即用不同的 LLM 模型,可以很方便的将本地知识文档通过不同的连接器接入到…...
react:路由
官方文档:https://reactrouter.com/en/main/start/overview#pending-navigation-ui 一:简单版本 先 npm i react-router-dom main.ts中内容替换为 import ReactDOM from react-dom/client import App from ./App.tsx import ./index.css import {creat…...
【AI工具】手把手带你使用Gradio分享你的模型
手把手带你使用Gradio分享你的模型 1. 快速入门2. 基本参数|支持的接口2.1 Interface类以及基础模块2.2 组件属性2.3 多输入输出组件2,4 图像组件2.5 Chatbots2.6 动态界面接口2.7 Blocks:更具灵活性和调控性2.7.1 Blocks入门2.7.2 更复杂的Blocks3. 分享自定义采样训练参考资…...
海洋专用cmocean颜色包_共22种--全平台可用
海洋专用cmocean颜色包_共22种–全平台可用 往期推荐: Python语言_matplotlib包_共80种–全平台可用 Python语言_single_color_共140种–全平台可用 R语言_RColorBrewer包–全平台可用 R语言gplots包的颜色索引表–全平台可用 R语言中的自带的调色板–五种–全平台…...
uni-app多端开发
uni-app 多端开发 一、命令创建uni-app 项目二、在微信小程序后台找到 appId 填写 appId三、运行项目四、使用 uni-ui4-1、下载4-2、自动导入4-3、ts项目下载类型校验 (uni-ui 组件库)4-3-1、下载4-3-2、配置 五、持久化 pinia六、数据请求封装七、获取组…...
Linux中固定ip端口和修改ip地址
一,更改虚拟网络编辑器 1,首先启动VMware,选择自己要更改ip或固定ip的虚拟机,并找到虚拟网络配编辑器,点击进入 2,进入之后需要点击右下角获取管理员权限后才能修改,有管理员权限之后图片如下 …...
csdn初始模板【自用】
这里写自定义目录标题 欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants 创建一个自定义列表如何创建一个…...
2311rust无畏并发.
原文 Rust无畏并发 Rust是为了解决两个麻烦问题: 1,如何安全系统编程 2,如何无畏并发 最初,这些问题似乎是无关的,但令惊讶的是,方法竟然是相同的:使Rust安全的相同工具也可帮助解决并发问题. 内存安全和并发错误,一般认为是代码在不应访问数据时访问数据.Rust依靠所有权为…...
阿里云中的云服务器的ubuntu中的vim没有显示行号
没有行号: 在终端输入命令: vim ~/.vimrc set nu...
Golang 在 Mac、Linux、Windows 下如何交叉编译
Golang 支持交叉编译,在一个平台上生成另一个平台的可执行程序。 GOOS:目标平台的操作系统(darwin、freebsd、linux、windows) GOARCH:目标平台的体系架构(386、amd64、arm) 具体组合…...
如何写好一篇学术论文
目录 前言 1.标题和摘要 1.1标题 1.2摘要及关键词 1.2.1摘要 1.2.2关键词 2.正文 2.1引言 2.2问题建模 2.3研究方法及分析 2.4仿真(伪代码) 2.5实验结果及分析 2.6 总结 2.7延深 2.7.1图片处理 2.7.2审稿回复 2.7.3如何避免拒稿 2.7.4写…...
kubernetes资源监控
目录 一、资源限制 1、limitrange 2、ResourceQuota 二、metrics-server 三、图形化监控和代码行监控 1、dashboard 2、k9s 四、hpa 一、资源限制 Kubernetes采用request和limit两种限制类型来对资源进行分配。request(资源需求):即运行Pod的节点必须满足运…...
Bitget Wallet:使用 Base 链购买 ETH 的简明教程
Base 链是一种 Layer 2(L2)公链,它可以为用户提供以太坊(ETH)代币,而 Bitget Wallet 是一款多功能加密货币钱包,支持 Base 链以及其他主要区块链。...
PostgreSQL简介及安装步骤
PostgreSQL简介 PostgreSQL是一款开源的关系型数据库管理系统,具有强大的扩展性、高度的可定制性和可靠的稳定性,因此在企业级应用和开发领域中得到了广泛的应用。本文将介绍PostgreSQL的基本概念以及在各种操作系统上的安装步骤。 安装步骤 1. Window…...
《安富莱嵌入式周报》第326期:航空航天级CANopen协议栈,开源USB PD电源和功耗分析,开源EtherCAT伺服驱动板,时序绘制软件,现代机器人设计
周报汇总地址:嵌入式周报 - uCOS & uCGUI & emWin & embOS & TouchGFX & ThreadX - 硬汉嵌入式论坛 - Powered by Discuz! 更新一期视频教程: BSP视频教程第28期:CANopen协议栈专题,CANopen主从机组网实战&a…...
[Kettle] Excel输入
Excel文件采用表格的形式,数据显示直观,操作方便 Excel文件采用工作表存储数据,一个文件有多张不同名称的工作表,分别存放相同字段或不同字段的数据 数据源 物理成绩(Kettle数据集2).xls https://download.csdn.net/download/H…...
vue3+ts 项目遇到的问题和bug
1.router中使用pinia报错 pinia.mjs:1709 Uncaught Error: [🍍]: "getActivePinia()" was called but there was no active Pinia. Are you trying to use a store before calling "app.use(pinia)"? See https://pinia.vuejs.org/core-concep…...
【Linux】补充:进程管理之手动控制进程,以及计划任务
目录 一、手动启动进程 1、理解前台启动与后台启动 2、如何完成前台启动后台启动的切换 3、完成并行执行多个任务 4、结束进程 1、kill 2、killall 2、pkill 二、计划任务 1、at一次性计划任务 2、实操 2、周期性计划任务 1、关于设置周期性任务的配置文件以及格式…...
听说,工作能力强的项目经理都有这几个特征
大家好,我是老原。 很多项目经理每天忙忙碌碌,但是一看结果,团队业绩没有完成、人才没有培养起来、自己的管理水平和个人领导力也没有得到提升。 明明付出了很多时间和精力,结果却只收获了团队的抱怨,以及老板对你管…...
合并两个有序链表OJ
合并两个有序链表OJ 文章目录 合并两个有序链表OJ一、题目及要求二、思路分析三、代码实现 一、题目及要求 二、思路分析 其次,题目里说了新链表是通过拼接原来的结点形成的,所以说我们不需要开辟新的空间。 三、代码实现 if (list1 NULL) {return li…...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...
UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...
RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...
Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...
pycharm 设置环境出错
pycharm 设置环境出错 pycharm 新建项目,设置虚拟环境,出错 pycharm 出错 Cannot open Local Failed to start [powershell.exe, -NoExit, -ExecutionPolicy, Bypass, -File, C:\Program Files\JetBrains\PyCharm 2024.1.3\plugins\terminal\shell-int…...
【堆垛策略】设计方法
堆垛策略的设计是积木堆叠系统的核心,直接影响堆叠的稳定性、效率和容错能力。以下是分层次的堆垛策略设计方法,涵盖基础规则、优化算法和容错机制: 1. 基础堆垛规则 (1) 物理稳定性优先 重心原则: 大尺寸/重量积木在下…...
Pydantic + Function Calling的结合
1、Pydantic Pydantic 是一个 Python 库,用于数据验证和设置管理,通过 Python 类型注解强制执行数据类型。它广泛用于 API 开发(如 FastAPI)、配置管理和数据解析,核心功能包括: 数据验证:通过…...
