FD-Align论文阅读
FD-Align: Feature Discrimination Alignment for Fine-tuning Pre-Trained Models in Few-Shot Learning(NeurIPS 2023)
主要工作是针对微调的和之前的prompt tuining,adapter系列对比
Motivation:
通过模型对虚假关联性的鲁棒性来解释全微调的CLIP的out-of-distribution(OOD)性能变差的原因。虚假关联性的鲁棒性指的是模型是否具有区分出样本中和类别相关信息(因果信息)以及(背景、风格等)类别无关信息(虚假信息)的能力。
先前的工作发现,OPENAI 的CLIP对虚假关联性有很好的鲁棒性,因此有很好的OOD性能。然而,全微调的CLIP的OOD性能会下降。对CLIP和全微调后的CLIP的attention map可视化后发现:全微调的CLIP更关注于物体的局部特征,这种对局部信息的注意力使得模型对虚假关联性的鲁棒性变差[3]。

也就是说,对CLIP进行全微调时,虽然模型更好得学习到了微调样本的因果特征,但是模型对虚假特征的识别能力也变差,导致模型学习到的因果特征不能很好的泛化到未见过样本。从而出现过拟合,影响OOD数据上的泛化性。因此,本文提出了一种不影响模型对虚假特征识别能力的微调方法来保证微调后的模型对虚假关联性的鲁棒性。
因果特征:代表和类别相关的特征
虚假特征:和类别上下文相关的特征
贡献
提出了虚假特征约束(Spurious Feature Constraint),用于微调CLIP,通过约束模型在微调前后提取的图像特征的概率分布,确保了模型提取的虚假特征的一致性
模型

Spurious Feature Constraint
首先计算每个提示模板Pj的特征在所有类上的平均值作为提示模板Pj的虚假原型

计算微调模型后提取的特征与虚假原型之间的相似度,生成虚假特征的分布如下

用预训练的视觉编码器 f0(微调前的) 来提取特征并产生虚假特征的分布,如下所示

loss:KL散度保持模型虚假特征上的概率分布在微调前后一致

总LOSS:

Spurious Prototype Correction
目前的提示模板大多是人工设计或者语言模型生成,难免会出现不合理或者冗余的情况,从而导致虚假信息原型不准确。 为此,首先使用异常值检测算法来删除不合理的提示特征

随后,使用k-Means合并其中的冗余特征。

部分实验

ref
https://zhuanlan.zhihu.com/p/663423245
相关文章:
FD-Align论文阅读
FD-Align: Feature Discrimination Alignment for Fine-tuning Pre-Trained Models in Few-Shot Learning(NeurIPS 2023) 主要工作是针对微调的和之前的prompt tuining,adapter系列对比 Motivation: 通过模型对虚假关联性的鲁棒…...
bug:Junit5报错,@SpringBootTest没有运行
1、首先解决Junit5报错 java.lang.NoClassDefFoundError: org/junit/platform/launcher/core/LauncherFactory 添加依赖 implementation org.junit.platform:junit-platform-launcher:1.8.2java.lang.IllegalArgumentException: Error: test loader org.eclipse.jdt.internal.…...
Clickhouse学习笔记(4)—— Clickhouse SQL
insert insert操作和mysql一致 标准语法:insert into [table_name] values(…),(….)从表到表的插入:insert into [table_name] select a,b,c from [table_name_2] update 和 delete ClickHouse 提供了 Delete 和 Update 的能力,这类操作…...
Centos, RockyLinux 常用软件安装汇总
一、基本指令: 命令作用clear清屏pwd显示当前路径cat / more显示文本文档uname -a查看当前版本hostnamectl查看当前版本cat /etc/redhat-release查看当前版本free查看剩余内存df -h[查看磁盘剩余空间]du -sh 查看文件夹名"dir"占用的空间lsof -i:8080查看…...
Lua更多语法与使用
文章目录 目的错误处理元表和元方法垃圾回收协程模块面向对象总结 目的 在前一篇文章: 《Lua入门使用与基础语法》 中介绍了一些基础的内容。这里将继续介绍Lua一些更多的内容。 同样的本文参考自官方手册: https://www.lua.org/manual/ 错误处理 下…...
探秘亚马逊云科技海外服务器 | 解析跨境云计算的前沿技术与应用
目录 一、什么是海外服务器 二、不同主流海外云服务器对比 三、海外服务器的创建(亚马逊为例) 四、个人总结 一、什么是海外服务器 亚马逊云科技海外服务器:指的是部署在世界各地的亚马逊数据中心中的服务器设备。这些服务器提供了计算、存储、数据库、网络等各…...
UnityAI——动物迁徙中的跟随实现实例
大家好,我是七七,今天来给大家介绍的是Unity中用操控行为实现的跟随领队行为。 看本文若是想了解和实现,只看本文即可,若是想彻底弄透,建议从七七的游戏AI专栏开始看。 废话不多说,先上视频: …...
堆的应用-----Top k 问题
目录 前言 Topk问题 1.问题描述 2.解决方法 3.代码实现(C/C) 前言 在人工智能算法岗位的面试中,TopK是问得最多的几个问题之一: 到底有几种方法? 这些方案里蕴含的优化思路究竟是怎么样的? 为啥T…...
11月14日星期二今日早报简报微语报早读
11月14日星期二,农历十月初二,早报微语早读。 1、江西南城县:限时发放购房补贴政策,三孩家庭每平方米最高补贴500元; 2、2023年中国内地电影市场累计票房突破500亿元; 3、市场监管总局:在全国…...
Spark读取excel文件
文章目录 一、excel数据源转成csv二、Spark读取csv文件(一)启动spark-shell(二)读取csv生成df(三)查看df内容一、excel数据源转成csv 集群bigdata - ubuntu: 192.168.191.19master(bigdata1) - centos: 192.168.23.78 slave1(bigdata2) - centos: 192.168.23.79 slave2(b…...
LLM大语言模型(典型ChatGPT)入门指南
文章目录 一、基础概念学习篇1.1 langchain视频学习笔记1.2 Finetune LLM视频学习笔记 二、实践篇2.1 预先下载模型:2.2 LangChain2.3 Colab demo2.3 text-generation-webui 三、国内项目实践langchain-chatchat 一、基础概念学习篇 1.1 langchain视频学习笔记 lan…...
Spring IOC - Bean的生命周期之实例化
在Spring启动流程文章中讲到,容器的初始化是从refresh方法开始的,其在初始化的过程中会调用finishBeanFactoryInitialization方法。 而在该方法中则会调用DefaultListableBeanFactory#preInstantiateSingletons方法,该方法的核心作用是初始化…...
前端 BUG 总结
文章目录 CSS 样式1、Chrome 89 版本期不再支持 /deep/,请勿使用嵌套 /deep/2、圆角按钮 button 点击后出现矩形框线3、怪异模式4、border 1 像素在手机上显示问题5、文本溢出问题 JavaScript 脚本1、移动端点击穿透2、使用parseInt时必须补全第二个参数 radix3、有…...
【蓝桥杯软件赛 零基础备赛20周】第3周——填空题
报名明年4月蓝桥杯软件赛的同学们,如果你是大一零基础,目前懵懂中,不知该怎么办,可以看看本博客系列:备赛20周合集 20周的完整安排请点击:20周计划 文章目录 00. 2023年第14届参赛数据0. 上一周答疑1. 填空…...
Pytorch自动混合精度的计算:torch.cuda.amp.autocast
1 autocast介绍 1.1 什么是AMP? 默认情况下,大多数深度学习框架都采用32位浮点算法进行训练。2017年,NVIDIA研究了一种用于混合精度训练的方法,该方法在训练网络时将单精度(FP32)与半精度(FP16)结合在一起ÿ…...
一文看懂香港优才计划和高才通计划的区别和优势?如何选?
一文看懂香港优才计划和高才通计划的区别和优势?如何选? 为什么很多人都渴望有个香港身份? 英文这里和内地文化相近,语言相通,同时税率较低、没有外汇管制,有稳定金融体制和良好的营商环境,诸多…...
DTC Network旗下代币DSTC大蒜头即将上线,市场热度飙升
全球数字资产领导者DTC Network宣布其代币DSTC(大蒜头)即将于近期上线,引发市场广泛关注。DTC Network以其创新性的区块链技术和多维度的网络构建,致力于打造一个融合Web3.0、元宇宙和DAPP应用的去中心化聚合公共平台,…...
高通SDX12:ASoC 音频框架浅析
一、简介 ASoC–ALSA System on Chip ,是建立在标准ALSA驱动层上,为了更好地支持嵌入式处理器和移动设备中的音频Codec的一套软件体系。 本文基于高通SDX12平台,对ASoC框架做一个分析。 二、整体框架 1. 硬件层面 嵌入式Linux设备的Audio subsystem可以划分为Machine(板…...
国际化:i18n
什么是国际化? 国际化也称作i18n,其来源是英文单词 internationalization的首末字符和n,18为中间的字符数。由于软件发行可能面向多个国家,对于不同国家的用户,软件显示不同语言的过程就是国际化。通常来讲࿰…...
【机器学习5】无监督学习聚类
相比于监督学习, 非监督学习的输入数据没有标签信息, 需要通过算法模型来挖掘数据内在的结构和模式。 非监督学习主要包含两大类学习方法: 数据聚类和特征变量关联。 1 K均值聚类及优化及改进模型 1.1 K-means 聚类是在事先并不知道任何样…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
STM32+rt-thread判断是否联网
一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...
如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?
Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...
