当前位置: 首页 > news >正文

dgl 的cuda 版本 环境配置(dgl cuda 版本库无法使用问题解决)

1. 如果你同时有dgl  dglcu-XX.XX 那么,应该只会运行dgl (DGL的CPU版本),因此,你需要把dgl(CPU)版本给卸载了

但是我只卸载CPU版本还不够,我GPU 版本的dglcu依旧不好使,因此吧GPU版本的也得卸载了重新安装

最新版的dgl我的cuda版本已经不配了,因此,找老的版本:Linux 64 :: Anaconda.org

我下载的是这个:Dgl Cuda11.3 :: Anaconda.org 

含义是 GPU版本的cuda版本为11.3,安装的命令行语句如下(记得关闭魔法梯子,否则会下载不成功)

然后运行demo发现torch也被卸载掉了,那就继续重装:

进入torch找老版本,我的cuda 版本11.4 ,这个版本比较特殊,直接看作11.3即可

因此,torch 可以下载 

建议使用pip版本的,因为conda版本的命令我试过,没下载成功,因为开不开魔法梯子我都无法在命令行访问到anaconda官网,离谱,,明明刚还用conda下载了dglcu

pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113

下载完成后再重新运行一下 ,运行下dgl的示例demo : 

import dgl
import torch as th
u, v = th.tensor([0, 1, 2]), th.tensor([2, 3, 4])
g = dgl.graph((u, v))
g.ndata['x'] = th.randn(5, 3)   # 原始特征在CPU上
print(g.device)
cuda_g = g.to('cuda:0')         # 接受来自后端框架的任何设备对象
cuda_g.device
cuda_g.ndata['x'].device        # 特征数据也拷贝到了GPU上
# 由GPU张量构造的图也在GPU上
u, v = u.to('cuda:0'), v.to('cuda:0')
g = dgl.graph((u, v))
print(g.device)

 然后就ok

相关文章:

dgl 的cuda 版本 环境配置(dgl cuda 版本库无法使用问题解决)

1. 如果你同时有dgl dglcu-XX.XX 那么,应该只会运行dgl (DGL的CPU版本),因此,你需要把dgl(CPU)版本给卸载了 但是我只卸载CPU版本还不够,我GPU 版本的dglcu依旧不好使,因此吧GPU版本的也得卸载…...

回文数和复利的威力(C#)

题目:回文数 回⽂数指正序(从左到右)和倒序(从右到左)读都是⼀样的整数。 输⼊⼀个数,判断是否是回⽂数 样例输⼊ 2397 输出no 样例输⼊ 2992 样例输出yes 输⼊的整数⼤于0,⼩于1000000。如…...

【Java】面向对象程序设计 课程笔记 Java核心类

🚀Write In Front🚀 📝个人主页:令夏二十三 🎁欢迎各位→点赞👍 收藏⭐️ 留言📝 📣系列专栏:Java 💬希望你看完之后,能对你有所帮助&#xff0…...

16个值得推荐的.NET ORM框架

什么是ORM? ORM 是 Object Relational Mapping 的缩写,译为“对象关系映射”,是一种程序设计技术,用于实现面向对象编程语言里不同类型系统的数据之间的转换。它解决了对象和关系型数据库之间的数据交互问题,ORM的作用是在关系型…...

Git 进阶使用

一. Git图形化操作 1.1.什么是图形化管理工具 图形化管理工具是一种通过可视化界面来操作计算机系统或应用程序的软件工具。在软件开发中,它通常用于管理和操作版本控制系统(如Git、SVN等)以及代码开发环境(如IDE)。与…...

【微软技术栈】C#.NET 泛型数学

本文内.NET 7 为基类库引入了新的数学相关泛型接口。 提供这些接口意味着可以将泛型类型或方法的类型参数约束为“类似于数字”。 此外,C# 11 及更高版本允许定义 static virtual 接口成员。 由于必须将运算符声明为 static,因此这一新的 C# 功能可用于在…...

【nlp】1.1文本处理的基本方法

文本处理的基本方法 1 什么是分词2 什么是命名实体识别3 什么是词性标准1 什么是分词 分词就是将连续的字序列按照一定的规范重新组合成词序列的过程。在英文的行文中,单词之间是以空格作为自然分界符的,而中文只是字、句和段能通过明显的分界符来简单划界,唯独词没有一个形…...

流量分析(信息安全铁人三项赛分区赛2-5.18)

题目描述 目录 题目描述 黑客的IP是多少 服务器1.99的web服务器使用的CMS及其版本号(请直接复制) 服务器拿到的webshell的网址(请输入url解码后的网址) 服务器1.99的主机名 网站根目录的绝对路径(注意最后加斜杠) 黑客上传的第一个文件名称是什么 黑客进行内网扫描&am…...

云服务器如何选?腾讯云2核2G3M云服务器88元一年!

作为一名程序员,在选择云服务器时,我们需要关注几个要点:网络稳定性、价格以及云服务商的规模。这些要素将直接影响到我们的使用体验和成本效益。接下来,我将为大家推荐一款性价比较高的轻应用云服务器。 腾讯云双11活动 腾讯云…...

【Hello Go】初识Go语言

初识Go语言 Go语言介绍Go语言是什么Go语言优势Go语言能用来做什么 Go语言环境安装第一个GO语言程序运行Go语言程序 Go语言介绍 Go语言是什么 go语言是是Google开发的一种静态强类型、编译型、并发型,并具有垃圾回收功能的编程语言. 静态类型:在静态类型…...

计算机视觉:人脸识别与检测

目录 前言 识别检测方法 本文方法 项目解析 完整代码及效果展示 前言 人脸识别作为一种生物特征识别技术,具有非侵扰性、非接触性、友好性和便捷性等优点。人脸识别通用的流程主要包括人脸检测、人脸裁剪、人脸校正、特征提取和人脸识别。人脸检测是从获取的图…...

【NLP】理解 Llama2:KV 缓存、分组查询注意力、旋转嵌入等

LLaMA 2.0是 Meta AI 的开创性作品,作为首批高性能开源预训练语言模型之一闯入了 AI 场景。值得注意的是,LLaMA-13B 的性能优于巨大的 GPT-3(175B),尽管其尺寸只是其一小部分。您无疑听说过 LLaMA 令人印象深刻的性能,但您是否想知…...

ctyunos 与 openeuler

ctyunos-2.0.1-220311-aarch64-dvd ctyunos-2.0.1-220329-everything-aarch64-dvd glibc python3 对应openEuler 20.03 LTS SP1...

跟着GPT学设计模式之工厂模式

工厂模式(Factory Design Pattern)分为三种更加细分的类型:简单工厂、工厂方法和抽象工厂。在这三种细分的工厂模式中,简单工厂、工厂方法原理比较简单,在实际的项目中也比较常用。而抽象工厂的原理稍微复杂点&#xf…...

VScode+python开发,多个解释器切换问题

内容:主要VScode使用多个解释器 环境准备 VScode编辑器,两个版本python解释器 python3.7.2 python3.11.6 问题: 目前我们的电脑安装了python3.7.2、python3.11.6两个解释器,在vscode编辑器中,无法切换解释器使用如…...

c++ 经典服务器开源项目Tinywebserver如何运行

第一次直接按作者的指示,运行sh ./build.sh,再运行./server,发现不起作用,localhost:9006也是拒绝访问的状态,后来摸索成功了发现,运行./server之后,应该是启动状态,就是不会退出,而…...

c++之xml的创建,增删改查

c之xml的创建&#xff0c;增删改查 1.创建写入2.添加3.删除4.修改&#xff1a; 1.创建写入 #include <stdio.h> #include <typeinfo> #include "F:/EDGE/tinyxml/tinyxml.h" #include <iostream> #include <string> #include <Winsock2.…...

【前端开发】JS Vue React中的通用递归函数

目录 前言 一、递归函数的由来 二、功能实现 1.后台数据 2.处理数据 3.整体代码 总结 &#x1f642;博主&#xff1a;冰海恋雨. &#x1f642;文章核心&#xff1a;【前端开发】JS Vue React中的通用递归函数 前言 大家好&#xff0c;今天和大家分享一下在前端开发中j…...

【python 生成器 面试必备】yield关键字,协程必知必会系列文章--自己控制程序调度,体验做上帝的感觉 1

python生成器系列文章目录 第一章 yield — Python (Part I) 文章目录 python生成器系列文章目录前言1. Generator Function 生成器函数2.并发和并行&#xff0c;抢占式和协作式2.Let’s implement Producer/Consumer pattern using subroutine: 生成器的状态 generator’s st…...

头哥实践平台之MapReduce基础实战

一. 第1关&#xff1a;成绩统计 编程要求 使用MapReduce计算班级每个学生的最好成绩&#xff0c;输入文件路径为/user/test/input&#xff0c;请将计算后的结果输出到/user/test/output/目录下。 先写命令行,如下: 一行就是一个命令 touch file01 echo Hello World Bye Wor…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

Cinnamon修改面板小工具图标

Cinnamon开始菜单-CSDN博客 设置模块都是做好的&#xff0c;比GNOME简单得多&#xff01; 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

C# SqlSugar:依赖注入与仓储模式实践

C# SqlSugar&#xff1a;依赖注入与仓储模式实践 在 C# 的应用开发中&#xff0c;数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护&#xff0c;许多开发者会选择成熟的 ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;SqlSugar 就是其中备受…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展&#xff0c;光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域&#xff0c;IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选&#xff0c;但在长期运行中&#xff0c;例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...