代码随想录算法训练营Day 54 || 392.判断子序列、115.不同的子序列
392.判断子序列
力扣题目链接(opens new window)
给定字符串 s 和 t ,判断 s 是否为 t 的子序列。
字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"是"abcde"的一个子序列,而"aec"不是)。
示例 1:
- 输入:s = "abc", t = "ahbgdc"
- 输出:true
示例 2:
- 输入:s = "axc", t = "ahbgdc"
- 输出:false
提示:
- 0 <= s.length <= 100
- 0 <= t.length <= 10^4
两个字符串都只由小写字符组成。
双指针法
- 初始化两个指针:
i
用于遍历字符串s
,j
用于遍历字符串t
。 - 遍历字符串
t
:使用指针j
遍历字符串t
,对于t
中的每个字符,检查是否与s
中的当前字符(由i
指向)相匹配。 - 匹配字符:如果匹配(即
s[i] == t[j]
),则将i
和j
同时向前移动;如果不匹配,则只将j
向前移动。 - 检查是否遍历完
s
:如果i
等于s
的长度,说明s
是t
的子序列;如果j
先达到t
的末尾,则说明s
不是t
的子序列。
def isSubsequence(s: str, t: str) -> bool:i, j = 0, 0while i < len(s) and j < len(t):if s[i] == t[j]:i += 1j += 1return i == len(s)# 测试代码
s1, t1 = "abc", "ahbgdc"
s2, t2 = "axc", "ahbgdc"print(isSubsequence(s1, t1)) # 应该输出 True
print(isSubsequence(s2, t2)) # 应该输出 False
115.不同的子序列
力扣题目链接(opens new window)
给定一个字符串 s 和一个字符串 t ,计算在 s 的子序列中 t 出现的个数。
字符串的一个 子序列 是指,通过删除一些(也可以不删除)字符且不干扰剩余字符相对位置所组成的新字符串。(例如,"ACE" 是 "ABCDE" 的一个子序列,而 "AEC" 不是)
题目数据保证答案符合 32 位带符号整数范围。
提示:
- 0 <= s.length, t.length <= 1000
- s 和 t 由英文字母组成
动态规划思路解析
-
状态定义:
dp[i][j]
表示考虑s
的前i
个字符和t
的前j
个字符时,t
作为s
的子序列出现的次数。
-
状态初始化:
dp[0][0] = 1
:两个空字符串匹配的次数是1。dp[i][0] = 1
对所有i
:如果t
是空字符串,那么无论s
是什么,都只有一种方式使t
成为s
的子序列(即全部删除s
)。
-
状态转移:
- 如果
s
的第i
个字符与t
的第j
个字符相同(s[i - 1] == t[j - 1]
),那么t
的前j
个字符可以在s
的前i - 1
个字符中找到对应的子序列,加上当前匹配的字符,形成新的子序列。同时,t
的前j
个字符也可能在s
的前i - 1
个字符中出现多次,不包括s[i]
。因此,dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]
。 - 如果不同(
s[i - 1] != t[j - 1]
),则s
的第i
个字符不能用于匹配t
的第j
个字符。这时,dp[i][j] = dp[i - 1][j]
。
- 如果
-
最终结果:
dp[len(s)][len(t)]
是最终结果,表示s
的前len(s)
个字符中t
的前len(t)
个字符作为子序列出现的总次数。
def numDistinct(s: str, t: str) -> int:m, n = len(s), len(t)# 初始化一个 (m+1) x (n+1) 的 dp 矩阵dp = [[0] * (n + 1) for _ in range(m + 1)]# 当 t 为空字符串时,s 的子序列中总有一种方式使得 t 为其子序列for i in range(m + 1):dp[i][0] = 1# 填充 dp 矩阵for i in range(1, m + 1):for j in range(1, n + 1):if s[i - 1] == t[j - 1]:# 如果字符匹配,可以选择使用或不使用 s[i-1]dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]else:# 如果字符不匹配,只能选择不使用 s[i-1]dp[i][j] = dp[i - 1][j]return dp[m][n]# 测试代码
s = "babgbag"
t = "bag"
print(numDistinct(s, t)) # 应该输出 5
相关文章:

代码随想录算法训练营Day 54 || 392.判断子序列、115.不同的子序列
392.判断子序列 力扣题目链接(opens new window) 给定字符串 s 和 t ,判断 s 是否为 t 的子序列。 字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,&quo…...

C 语言 gets()和puts()
C 语言 gets()和puts() gets()和puts()在头文件stdio.h中声明。这两个函数用于字符串的输入/输出操作。 C gets()函数 gets()函数使用户可以输入一些字符,然后按Enter键。 用户输入的所有字符都存储在字符数组中。 空字符将添加到数组以使其成为字符串。 gets()允…...

核—幂零分解
若向量空间 V \mathcal V V存在子空间 X \mathcal X X与 Y \mathcal Y Y,当 X Y V X ∩ Y 0 \mathcal {X\text{}Y\text{}V}\\ \mathcal {X}\cap \mathcal {Y}0 XYVX∩Y0 时称子空间 X \mathcal X X与 Y \mathcal Y Y是完备的,其中记为 X ⊕ Y V \ma…...

轻松掌控财务,分析账户花销,明细记录支出情况
随着科技的发展,我们的生活变得越来越智能化。然而,对于许多忙碌的现代人来说,管理财务可能是一件令人头疼的事情。复杂的账单、花销、收入,这些可能会让你感到无从下手。但现在,我们有一个全新的解决方案——一款全新…...

竞赛 题目:基于机器视觉opencv的手势检测 手势识别 算法 - 深度学习 卷积神经网络 opencv python
文章目录 1 简介2 传统机器视觉的手势检测2.1 轮廓检测法2.2 算法结果2.3 整体代码实现2.3.1 算法流程 3 深度学习方法做手势识别3.1 经典的卷积神经网络3.2 YOLO系列3.3 SSD3.4 实现步骤3.4.1 数据集3.4.2 图像预处理3.4.3 构建卷积神经网络结构3.4.4 实验训练过程及结果 3.5 …...

11. Spring源码篇之实例化前的后置处理器
简介 spring在创建Bean的过程中,提供了很多个生命周期,实例化前就是比较早的一个生命周期,顾名思义就是在Bean被实例化之前的处理,这个时候还没实例化,只能拿到该Bean的Class对象,如果在这个时候直接返回一…...

Python-Python高阶技巧:HTTP协议、静态Web服务器程序开发、循环接收客户端的连接请求
版本说明 当前版本号[20231114]。 版本修改说明20231114初版 目录 文章目录 版本说明目录HTTP协议1、网址1.1 网址的概念1.2 URL的组成1.3 知识要点 2、HTTP协议的介绍2.1 HTTP协议的概念及作用2.2 HTTP协议的概念及作用2.3 浏览器访问Web服务器的过程 3、HTTP请求报文3.1 H…...

P1304 哥德巴赫猜想
题目描述 输入一个偶数 N,验证 4∼N 所有偶数是否符合哥德巴赫猜想:任一大于 22 的偶数都可写成两个质数之和。如果一个数不止一种分法,则输出第一个加数相比其他分法最小的方案。例如 1010,10=3+7=5+510=3+7=5+5,则 10=5+510=5+5 是错误答案。 输入格式 第一行输入一个…...

CSDN每日一题学习训练——Python版(搜索插入位置、最大子序和)
版本说明 当前版本号[20231118]。 版本修改说明20231118初版 目录 文章目录 版本说明目录搜索插入位置题目解题思路代码思路参考代码 最大子序和题目解题思路代码思路参考代码 搜索插入位置 题目 给定一个排序数组和一个目标值,在数组中找到目标值,…...

Java在物联网中的重要性
【点我-这里送书】 本人详解 作者:王文峰,参加过 CSDN 2020年度博客之星,《Java王大师王天师》 公众号:JAVA开发王大师,专注于天道酬勤的 Java 开发问题中国国学、传统文化和代码爱好者的程序人生,期待你的关注和支持!本人外号:神秘小峯 山峯 转载说明:务必注明来源(…...

动态规划解背包问题
题目 题解 def knapsac(W: int, N: int, wt: List[int], val: List[int]) -> int:# 定义状态动作价值函数: dp[i][j],对于前i个物品,当前背包容量为j,最大的可装载价值dp [[0 for j in range(W1)] for i in range(N1)]# 状态动作转移for…...

PCL内置点云类型
PCL内置了许多点云类型供我们使用,下面先介绍PLC内置的点云数据类型 PCL中的点云类型为PointT;至于为什么是PointT类型需要追随到原来的ros开发中去,因为PCL库也是从原来的ROS中剥离出来的;大家都一致的认为点云结构是离散的N维信…...

clickhouse数据结构和常用数据操作
背景, 大数据中查询用mysql时间太长, 使用clickhouse 速度快, 数据写入mysql后同步到clickhouse中 测试1千万数据模糊搜索 mysql 需要30-40秒 clickhouse 约 100ms 一 数据结构和存储引擎 1 查看clickhouse所有数据类型 select * from system.data_type_families; 2 …...

upload-labs关卡9(基于win特性data流绕过)通关思路
文章目录 前言一、靶场需要了解的知识1::$data是什么 二、靶场第九关通关思路1、看源码2、bp抓包修改后缀名3、检查是否成功上传 总结 前言 此文章只用于学习和反思巩固文件上传漏洞知识,禁止用于做非法攻击。注意靶场是可以练习的平台,不能随意去尚未授…...

C++过河卒问题
#include <iostream> #include <cstring> using namespace std;int board[20][20]; // 棋盘 int dp[20][20][20][20]; // 动态规划数组int main() {int x0, y0, x1, y1;cin >> x0 >> y0 >> x1 >> y1; // 输入卒的起点和终点memset(board,…...

【机器学习12】集成学习
1 集成学习分类 1.1 Boosting 训练基分类器时采用串行的方式, 各个基分类器之间有依赖。每一层在训练的时候, 对前一层基分类器分错的样本, 给予更高的权重。 测试时, 根据各层分类器的结果的加权得到最终结果。 1.2 Bagging …...

nodeJs基础笔记
title: nodeJs基础笔记 date: 2023-11-18 22:33:54 tags: 1. Buffer 1. 概念 Buffer 是一个类似于数组的 对象 ,用于表示固定长度的字节序列。 Buffer 本质是一段内存空间,专门用来处理 二进制数据 。 2. 特点 Buffer 大小固定且无法调整Buffer 性能…...

Skywalking流程分析_9(JDK类库中增强流程)
前言 之前的文章详细介绍了关于非JDK类库的静态方法、构造方法、实例方法的增强拦截流程,本文会详细分析JDK类库中的类是如何被增强拦截的 回到最开始的SkyWalkingAgent#premain try {/** 里面有个重点逻辑 把一些类注入到Boostrap类加载器中 为了解决Bootstrap类…...

矩阵的QR分解
矩阵的QR分解 GramSchmidt 设存在 B { x 1 , x 2 , … , x n } \mathcal{B}\left\{\mathbf{x}_{1},\mathbf{x}_{2},\ldots,\mathbf{x}_{n}\right\} B{x1,x2,…,xn}在施密特正交化过程中 q 1 x 1 ∣ ∣ x 1 ∣ ∣ q_1\frac{x_1}{||x_1||} q1∣∣x1∣∣x1 q k …...

STL总结
STL vector 头文件<vector> 初始化,定义,定义长度,定义长度并且赋值,从数组中获取数据返回元素个数size()判断是否为空empty()返回第一个元素front()返回最后一个数back()删除最后一个数pop_back()插入push_back(x)清空clear()begin()end()使用s…...

资深测试总结,现在软件测试有未来吗?“你“的底气在哪里?
目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 1、为什么会有 “…...

Scalable Exact Inference in Multi-Output Gaussian Processes
Orthogonal Instantaneous Linear Mixing Model TY are m-dimensional summaries,ILMM means ‘Instantaneous Linear Mixing Model’,OILMM means ‘Orthogonal Instantaneous Linear Mixing Model’ 辅助信息 作者未提供代码...

sqli-labs(Less-3)
1. 通过构造id1’ 和id1’) 和id1’)–确定存在注入 可知原始url为 id(‘1’) 2.使用order by 语句猜字段数 http://127.0.0.1/sqlilabs/Less-3/?id1) order by 4 -- http://127.0.0.1/sqlilabs/Less-3/?id1) order by 3 --3. 使用联合查询union select http://127.0.0.1…...

集合框架面试题
一、集合容器的概述 1. 什么是集合 集合框架:用于存储数据的容器。 集合框架是为表示和操作集合而规定的一种统一的标准的体系结构。 任何集合框架都包含三大块内容: 对外的接口、接口的实现和对集合运算的算 法。 接口:表示集合的抽象数据…...

【LeetCode刷题日志】225.用队列实现栈
🎈个人主页:库库的里昂 🎐C/C领域新星创作者 🎉欢迎 👍点赞✍评论⭐收藏✨收录专栏:LeetCode 刷题日志🤝希望作者的文章能对你有所帮助,有不足的地方请在评论区留言指正,…...

【JavaScript】fetch 处理流式数据,实现类 chatgpt 对话
本文只包含最基础的请求后端大佬给得对话接口,大部分模型的传参是差不多的,核心还是如何处理 fetch 获取的流数据 import { defineStore } from pinia; import { ElMessage } from element-plus;type Role system | user | assistant; export interfac…...

收发电子邮件
电子邮件是Internet提供的又一个重要服务项目。早在1987年9月20日,中国首封电子邮件就是从北京经意大利向前联邦德国卡尔斯鲁厄大学发出的,在中国首次实现了与Internet的连接,使中国成为国际互联网大家庭中的一员。现在随着Internet的迅速发展…...

sql13(Leetcode570至少有5名直接下属的经理)
代码: 脑子记不住 语法全靠试.. # Write your MySQL query statement below select b.name from (select managerId,count(managerId) as numfrom Employeegroup by managerId ) a left join Employee b on a.managerIdb.id where a.num>5 and b.name is not N…...

15分钟,不,用模板做数据可视化只需5分钟
测试显示,一个对奥威BI软件不太熟悉的人来开发数据可视化报表,要15分钟,而当这个人去套用数据可视化模板做报表,只需5分钟! 数据可视化模板是奥威BI上的一个特色功能板块。用户下载后更新数据源,立即就能获…...

C 语言字符串函数
C 语言字符串函数 在本文中,您将学习使用诸如gets(),puts,strlen()等库函数在C中操作字符串。您将学习从用户那里获取字符串并对该字符串执行操作。 您通常需要根据问题的需要来操作字符串。大多数字符串操作都可以自定义方法完成ÿ…...