当前位置: 首页 > news >正文

从0开始学习数据结构 C语言实现 1.前篇及二分查找算法

一、前篇

1、什么是数据结构?

数据结构是带有结构特性的数据元素的集合,它研究的是数据的逻辑结构和数据的物理结构以及它们之间的相互关系

 2、时间复杂度与空间复杂度

大O符号是用于描述函数渐进行为的数学符号

常用函数的增长表

阶乘O(n!) > 指数阶(2^n) > 立方阶O(n^3) > 平方阶O(n^2) > 线性对数阶O(nlog2n) > 线性阶O(n) > 对数阶O(log2n) > 常数阶O(1)

从立方阶开始,时间复杂度较大

二、二分查找

在有序数组中查找一个值,如果找到了则返回下标,如果没找到则返回-1

方法一:遍历数组进行查找

时间复杂度:O(n)

//1.遍历算法在数组中查找一个元素
//方法体
int search(int* arr, int length, int target) {for (int i = 0; i < length; i++) {if (arr[i] == target) {return i;}}
}

方法二:减小循环次数进行遍历查找

时间复杂度小于O(n)

因为题目里声明是有序数组,所以当数组中的值比查找的值大时,可以直接break跳出循环,减少循环次数

//2.减小循环次数进行遍历查找
//方法体
int search2(int* arr, int length, int target) {for (int i = 0; i < length; i++) {if (arr[i] == target) {return i;}if (arr[i] > target) {break;}}return -1;
}

方法三;二分查找

二分思想就是将一个 有序数组 不断进行平分,直到找到为止,不断平分除以二,降低时间复杂度

时间复杂度:O(og2n)

//3.二分查找
//方法体
int binarySearch(int* arr, int target, int left, int right) {if (left > right) {return -1;}int mid = (left + right) / 2;if (arr[mid] == target) {return mid;}if (arr[mid] > target) {mid = binarySearch(arr, target, left, mid - 1);return mid;}else {mid = binarySearch(arr, target, mid + 1, right);return mid;}
}int search3(int* arr, int length, int target) {return binarySearch(arr, target, 0, length - 1);
}

相关文章:

从0开始学习数据结构 C语言实现 1.前篇及二分查找算法

一、前篇 1、什么是数据结构&#xff1f; 数据结构是带有结构特性的数据元素的集合&#xff0c;它研究的是数据的逻辑结构和数据的物理结构以及它们之间的相互关系 2、时间复杂度与空间复杂度 大O符号是用于描述函数渐进行为的数学符号 常用函数的增长表 阶乘O(n!) > 指数…...

VSCode 使用CMakePreset找不到cl.exe编译器的问题

在用vscode开发c项目的时候&#xff0c;使用预先配置的CMakePresets.json可以把一些特定的cmake选项固定下来&#xff0c;在配置时直接使用 "cmake --config --preset presetname"就可以进行配置&#xff0c;免去在命令行输入过多的配置参数。 但是在vscode中&#…...

【Linux系统化学习】进程的状态 | 僵尸进程 | 孤儿进程

个人主页点击直达&#xff1a;小白不是程序媛 Linux专栏&#xff1a;Linux系统化学习 目录 操作系统进程的状态 运行状态 阻塞状态 进程阻塞的现象 挂起阻塞状态 Linux进程状态 Linux内核源代码怎么说 R&#xff08;running状态&#xff09;运行状态 S&#xff08;sl…...

深信服AC流量管理技术

拓扑图 一.保证通道针对修仙部&#xff0c;访问网站&#xff0c;邮件&#xff0c;DNS&#xff0c;IM&#xff0c;办工 OA&#xff0c;微博论坛网上银行等常见应用保证带宽最低 50%&#xff0c;最高 100% 1. 先新建线路带宽 2.新增流量管理通道&#xff08;保证关键应用&#x…...

二元关系及关系代数中的象集、除运算

二元关系及关系代数中的象集、除运算 数学上&#xff0c;二元关系用于讨论两个数学对象的联系。诸如算术中的「大于」及「等于」&#xff0c;几何学中的"相似"&#xff0c;或集合论中的"为...之元素"或"为...之子集"。二元关系有时会简称关系&a…...

[PHP]关联和操作MySQL数据库然后将数据库部署到ECS

在Mac电脑上使用VS Code进行PHP开发并关联操作MySQL数据库&#xff0c;然后将数据库部署到ECS。 1.安装PHP和MySQL 确保你的Mac上已经安装了PHP和MySQL。你可以使用Homebrew来安装它们&#xff1a; $ brew install php $ brew install mysql 安装mysql完成后记住这一句: …...

23.11.19日总结

经过昨天的中期答辩&#xff0c;其实可以看出来项目进度太慢了&#xff0c;现在是第十周&#xff0c;预计第十四周是终级答辩&#xff0c;在这段时间要把项目写完。 前端要加上一个未登录的拦截器&#xff0c;后端加上全局的异常处理。对于饿了么项目的商品建表&#xff0c;之前…...

系列一、JVM概述

一、概述 1.1、Java发展中的重大事件 1.2、虚拟机 vs Java虚拟机 1.2.1、虚拟机 1.2.2、Java虚拟机 1.2.3、Java虚拟机的作用 Java虚拟机是二进制字节码的运行环境&#xff0c;负责装载字节码到其内部&#xff0c;解释/编译为对应平台上的机器指令指令。每一条Java指令&#…...

milvus数据管理-压缩数据

Milvus 默认支持自动数据压缩。您可以 配置 Milvus 以启用或禁用 压缩 和自动压缩。 如果自动压缩被禁用&#xff0c;您仍然可以手动压缩数据。 1.手动压缩数据 压缩请求是异步处理的&#xff0c;因为它们通常需要花费很长时间。 from pymilvus import Collection collection…...

SpringBoot项目连接linux服务器数据库两种解决方法(linux直接开放端口访问本机通过SSH协议访问,以mysql为例)

最近找个springboot脚手架重新熟悉一下springboot相关框架的东西&#xff0c;结果发现好像项目还不能直接像数据库GUI工具一样填几个SSH参数就可以了&#xff0c;于是就给他再整一下看看如何解决 linux开放3306&#xff08;可修改&#xff09;端口直接访问 此方法较为方便&am…...

【Rust】快速教程——闭包与生命周期

前言 你怎么向天生的瞎子说清颜色&#xff1f;怎么用手势向天生的聋子描述声音&#xff1f; 鲜花就在眼前&#xff0c;雷鸣就在头顶&#xff0c;对他们来说却都毫无意义 眼睛看不到&#xff0c;鼻子可以嗅闻花香&#xff0c;耳朵听不见&#xff0c;手指可以触碰窗纸的震动。 犯…...

redis高级案列case

案列一 双写一致性 案例二 双锁策略 package com.redis.redis01.service;import com.redis.redis01.bean.RedisBs; import com.redis.redis01.mapper.RedisBsMapper; import lombok.extern.slf4j.Slf4j; import org.springframework.beans.factory.annotation.Autowired; imp…...

Vue3+Vite实现工程化,attribute属性渲染v-bind指令

想要渲染一个元素的attribute&#xff0c;应该使用v-bind指令 由于插值表达式不能直接放在标签的属性中&#xff0c;所有要渲染元素的属性就应该使用v-bindv-bind可以用于渲染任何元素的属性&#xff0c;语法为 v-bind:属性名数据名&#xff0c;可以简写为 :属性名数据名 <…...

下一代搜索引擎会什么?

现在是北京时间2023年11月18日。聊一聊搜索。 说到搜索&#xff0c;大家首先想到的肯定是谷歌&#xff0c;百度。我把这些定义成上一个时代的搜索引擎。ChatGPT已经火热了有一年的时间了&#xff0c;大家都认为Ai搜索是下一代的搜索。但是AI搜索&#xff0c;需要的是很大算力&a…...

WPF中如何在MVVM模式下关闭窗口

完全来源于十月的寒流&#xff0c;感谢大佬讲解 使用Behaviors <Window x:Class"Test_03.MainWindow"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:b"http://schemas.microsoft.com/xaml/behaviors"xmlns:x&quo…...

【数据结构&C++】二叉平衡搜索树-AVL树(25)

前言 大家好吖&#xff0c;欢迎来到 YY 滴C系列 &#xff0c;热烈欢迎&#xff01; 本章主要内容面向接触过C的老铁 主要内容含&#xff1a; 欢迎订阅 YY滴C专栏&#xff01;更多干货持续更新&#xff01;以下是传送门&#xff01; 目录 一.AVL树的概念二.AVL树节点的定义(代码…...

Python算法——树的最大深度和最小深度

Python中的树的最大深度和最小深度算法详解 树的最大深度和最小深度是树结构中的两个关键指标&#xff0c;它们分别表示树的从根节点到最深叶子节点的最大路径长度和最小路径长度。在本文中&#xff0c;我们将深入讨论如何计算树的最大深度和最小深度&#xff0c;并提供Python…...

46.全排列-py

46.全排列 class Solution(object):def permute(self, nums):""":type nums: List[int]:rtype: List[List[int]]"""# 结果数组0ans[]nlen(nums)# 判断是否使用state_[False]*n# 临时状态数组dp_[]def dfs (index):# 终止条件if indexn:ans.appe…...

系列三、GC垃圾回收算法和垃圾收集器的关系?分别是什么请你谈谈

一、关系 GC算法&#xff08;引用计数法、复制算法、标记清除算法、标记整理算法&#xff09;是方法论&#xff0c;垃圾收集器是算法的落地实现。 二、4种主要垃圾收集器 4.1、串行垃圾收集器&#xff08;Serial&#xff09; 它为单线程环境设计&#xff0c;并且只使用一个线程…...

WPF中的虚拟化是什么

WPF&#xff08;Windows Presentation Foundation&#xff09;中的虚拟化是一种性能优化技术&#xff0c;它主要用于提高大量数据展示的效率。在WPF中&#xff0c;如果你有一个包含大量项的ItemsControl&#xff08;例如ListBox、ListView或DataGrid等&#xff09;&#xff0c;…...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站&#xff0c;会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后&#xff0c;网站没有变化的情况。 不熟悉siteground主机的新手&#xff0c;遇到这个问题&#xff0c;就很抓狂&#xff0c;明明是哪都没操作错误&#x…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的&#xff0c;根据Excel列的需求预估的工时直接打骨折&#xff0c;不要问我为什么&#xff0c;主要…...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题&#xff1a;3564. 季节性销售分析 题目&#xff1a; 表&#xff1a;sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

今日科技热点速览

&#x1f525; 今日科技热点速览 &#x1f3ae; 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售&#xff0c;主打更强图形性能与沉浸式体验&#xff0c;支持多模态交互&#xff0c;受到全球玩家热捧 。 &#x1f916; 人工智能持续突破 DeepSeek-R1&…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

JavaScript 数据类型详解

JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型&#xff08;Primitive&#xff09; 和 对象类型&#xff08;Object&#xff09; 两大类&#xff0c;共 8 种&#xff08;ES11&#xff09;&#xff1a; 一、原始类型&#xff08;7种&#xff09; 1. undefined 定…...

MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)

macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 &#x1f37a; 最新版brew安装慢到怀疑人生&#xff1f;别怕&#xff0c;教你轻松起飞&#xff01; 最近Homebrew更新至最新版&#xff0c;每次执行 brew 命令时都会自动从官方地址 https://formulae.…...

LangFlow技术架构分析

&#x1f527; LangFlow 的可视化技术栈 前端节点编辑器 底层框架&#xff1a;基于 &#xff08;一个现代化的 React 节点绘图库&#xff09; 功能&#xff1a; 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...