python 计算最大回撤
1. 什么是最大回撤
最大回撤是评估金融产品收益的一个非常重要的风险指标,它指的是在选定历史周期内任一历史时点往后推,产品净值走到最低点时的收益率回撤幅度的最大值。
以上图为例, 最大回撤 = ( V a l u e A − V a l u e B ) V a l u e A 最大回撤 = \frac{(ValueA - ValueB) } {ValueA} 最大回撤=ValueA(ValueA−ValueB)
2. 计算最大回撤
下面演示使用pandas 计算最大回撤
- 获取贵州茅台20191.1到2019.12.31的日k数据
import pandas as pd
import numpy as np
import baostock as bslg = bs.login()
# 显示登陆返回信息
print('login respond error_code:'+lg.error_code)
print('login respond error_msg:'+lg.error_msg)#### 获取沪深A股历史K线数据 ####
# 详细指标参数,参见“历史行情指标参数”章节;“分钟线”参数与“日线”参数不同。“分钟线”不包含指数。
# 分钟线指标:date,time,code,open,high,low,close,volume,amount,adjustflag
# 周月线指标:date,code,open,high,low,close,volume,amount,adjustflag,turn,pctChg
rs = bs.query_history_k_data_plus("sh.600519","date,code,open,high,low,close,volume",start_date='2019-01-01', end_date='2019-12-31',frequency="d", adjustflag="3")
print('query_history_k_data_plus respond error_code:'+ rs.error_code)
print('query_history_k_data_plus respond error_msg:'+ rs.error_msg)data_list = []
while (rs.error_code == '0') & rs.next():# 获取一条记录,将记录合并在一起data_list.append(rs.get_row_data())
result = pd.DataFrame(data_list, columns=rs.fields)#### 结果集输出到csv文件 ####
result.to_csv("贵州茅台_k_data.csv", index=False)
print(result)#### 登出系统 ####
bs.logout()
2. 读取贵州茅台的日k数据,读入日期和收盘价
data = pd.read_csv("贵州茅台_k_data.csv")[["date", "close"]];
3.计算每天的回撤值
# 找出当前值以前的最大值
data["previous_max"] = data["close"].cummax(axis=0)
# 计算每一天的回撤
data['draw_downs'] = data['close'] / data['previous_max'] - 1
4.可视化
data.plot(y=['close','previous_max'], figsize=(8,4))
# 绘制回撤曲线
data.plot(y='draw_downs',figsize=(8,4),color='g')
5.计算最大回撤
# 最大回撤
data['draw_downs'].min()
相关文章:

python 计算最大回撤
1. 什么是最大回撤 最大回撤是评估金融产品收益的一个非常重要的风险指标,它指的是在选定历史周期内任一历史时点往后推,产品净值走到最低点时的收益率回撤幅度的最大值。 以上图为例, 最大回撤 ( V a l u e A − V a l u e B ) V a l u e …...
Linux系统中常用的压缩与解压缩方法
目录 一.前言二.如何压缩与解压缩 一.前言 Linux系统中压缩和解压缩的方法很多,这篇文章只简单介绍一下使用tar和gzip进行压缩与解压缩。 二.如何压缩与解压缩 tar和gzip命令内容很多,这篇文章只是简单介绍一下。 1.看一下gzip命令压缩与解压缩方法。…...
目标检测YOLO实战应用案例100讲-基于机器视觉的水稻病虫害监测预警(续)
目录 3.3 试验结果与分析 3.3.1 数据集介绍 3.3.3 评价标准 3.3.4 模型训练参数设置...
【星海随笔】redis 解析
redis 非关系型数据库 支持事务,操作都是原子性 所谓的原子性就是对数据的更改要么全部执行,要么全部不执行。 redis-server:顾名思义,redis服务 redis-cli:redis client,提供一个redis客户端,…...

鸿蒙:实现两个Page页面跳转
效果展示 这篇博文在《鸿蒙:从0到“Hello Harmony”》基础上实现两个Page页面跳转 1.构建第一个页面 第一个页面就是“Hello Harmony”,把文件名和显示内容都改一下,改成“FirstPage”,再添加一个“Next”按钮。 Entry Compone…...
C#有关里氏替换原则的经典问题答疑
目录 理解创建类型与变量类型很关键 先来理解变量类型。 再来理解创建类型。 有了正确的理解再来看疑问 里氏替换原则是面向对象七大原则中最重要的原则。 语法表现:父类容器装子类对象。 namespace 里氏替换原则 {class GameObject { } class Player : GameO…...

【每日一题】689. 三个无重叠子数组的最大和-2023.11.19
题目: 689. 三个无重叠子数组的最大和 给你一个整数数组 nums 和一个整数 k ,找出三个长度为 k 、互不重叠、且全部数字和(3 * k 项)最大的子数组,并返回这三个子数组。 以下标的数组形式返回结果,数组中…...

“开源 vs. 闭源:大模型的未来发展趋势预测“——探讨大模型未来的发展方向
文章目录 每日一句正能量前言什么是大模型的开源与闭源开源与闭源的定义和特点开源的意义开源和闭源的优劣势比较不同的大模型企业,开源、闭源的策略不尽相同。企业在开发垂类模型时选择开源还是闭源大模型开源vs 闭源:两者并非选择题后记 每日一句正能量…...

计算机网络——物理层-信道的极限容量(奈奎斯特公式、香农公式)
目录 介绍 奈氏准则 香农公式 介绍 信号在传输过程中,会受到各种因素的影响。 如图所示,这是一个数字信号。 当它通过实际的信道后,波形会产生失真;当失真不严重时,在输出端还可根据已失真的波形还原出发送的码元…...

【算法挨揍日记】day31——673. 最长递增子序列的个数、646. 最长数对链
673. 最长递增子序列的个数 673. 最长递增子序列的个数 题目解析: 给定一个未排序的整数数组 nums , 返回最长递增子序列的个数 。 注意 这个数列必须是 严格 递增的。 解题思路: 算法思路: 1. 状态表⽰: 先尝试…...

Jmeter做接口测试
1.Jmeter的安装以及环境变量的配置 Jmeter是基于java语法开发的接口测试以及性能测试的工具。 jdk:17 (最新的Jeknins,只能支持到17) jmeter:5.6 官网:http://jmeter.apache.org/download_jmeter.cgi 认识JMeter的目录࿱…...

第14届蓝桥杯青少组python试题解析:23年5月省赛
选择题 T1. 执行以下代码,输出结果是()。 lst "abc" print(lstlst)abcabc abc lstlst abcabc T2. 执行以下代码,输出的结果是()。 age {16,18,17} print(type(sorted(age)))<class set&…...

SpringCloud 微服务全栈体系(十四)
第十一章 分布式搜索引擎 elasticsearch 四、RestAPI ES 官方提供了各种不同语言的客户端,用来操作 ES。这些客户端的本质就是组装 DSL 语句,通过 http 请求发送给 ES。官方文档地址:https://www.elastic.co/guide/en/elasticsearch/client/…...
【开题报告】基于微信小程序的个人健康管理系统的设计与实现
1.选题背景与意义 在现代社会,人们对健康的关注日益增加。随着生活方式的变化和工作压力的增加,许多人意识到保持良好的身体健康对于提高生活质量和幸福感的重要性。 然而,许多人在日常生活中缺乏对自身健康状况的了解和管理。他们可能没有…...
Swagger笔记
一、导包 <!--引入swagger--> <dependency><groupId>io.springfox</groupId><artifactId>springfox-swagger2</artifactId><version>2.9.2</version> </dependency> <!--前端的UI界面--> <dependency><…...

数据结构 堆
手写堆,而非stl中的堆 如何手写一个堆? //将数组建成堆 <O(n) for (int i n / 2;i;i--) //从n/2开始down down(i); 从n/2元素开始down,最下面一层元素的个数是n/2,其余上面的元素的个数是n/2,从最下面一层到最高层…...

将 ONLYOFFICE 文档编辑器与 Node.js 应用集成
我们来了解下,如何将 ONLYOFFICE 文档编辑器与您的 Web 应用集成。 许多 Web 应用都可以从文档编辑功能中获益。但是要从头开始创建这个功能,需要花费大量时间和精力。幸运的是,您可以使用 ONLYOFFICE——这是一款开源办公套件,可…...

CentOS 7搭建Gitlab流程
目录 1、查询docker镜像gitlab-ce 2、拉取镜像 3、查询已下载的镜像 4、新建gitlab文件夹 5、在gitlab文件夹下新建相关文件夹 6、创建运行gitlab的容器 7、查看docker容器 8、根据Linux地址访问gitlab 9、进入docker容器,设置用户名的和密码 10、登录git…...

Idea安装完成配置
目录: 环境配置Java配置Maven配置Git配置 基础设置编码级设置File Header自动生成序列化编号配置 插件安装MyBtisPlusRestfulTooklkit-fix 环境配置 Java配置 Idea右上方,找到Project Settings. 有些版本直接有,有些是在设置下的二级菜单下…...

超详细~25考研规划~感恩现在努力的你!!!
25考研规划 俄语,翻译过来叫我爱你 考试时间 第一天 8.30-11.30政治——100分 2.00-5.00英语——100分 第二天 8.30-11.30数学——150分 2.00-5.00专业课——150分 1.什么是25考研 将在2024年12月参加考研,2025年本科毕业,9月读研究…...

Chapter03-Authentication vulnerabilities
文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...
.Net Framework 4/C# 关键字(非常用,持续更新...)
一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...

搭建DNS域名解析服务器(正向解析资源文件)
正向解析资源文件 1)准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2)服务端安装软件:bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...
Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换
目录 关键点 技术实现1 技术实现2 摘要: 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式(自动驾驶、人工驾驶、远程驾驶、主动安全),并通过实时消息推送更新车…...