《视觉SLAM十四讲》-- 建图
11 建图
11.1 概述
(1)地图的几类用处:
- 定位:
- 导航:机器人在地图中进行路径规划;
- 避障
- 重建
- 交互:人与地图之间的互动
(2)几类地图
- 稀疏地图
- 稠密地图
- 语义地图

11.2 单目稠密重建
11.2.1 立体视觉
(1)稠密重建中,我们需要知道每个像素(或大部分像素)的距离,对此有以下几种方案:
- 使用单目相机,估计相机运动,并且三角化计算像素的距离;
- 使用双目相机,利用左右目的视差计算像素的距离;
- 使用 RGB-D 相机直接获取像素距离。
前两种方式称为立体视觉,在 RGB-D 相机无法很好应用的室外、大型场景中,仍有较好的表现。
11.2.2 极线搜索与块匹配
对于一个单目相机,假设我们观察测到了某个像素 p 1 p_1 p1,显然,还是无法确定它的深度信息,但这个像素对应的空间点应该分布在某条射线上。从另一个视角,这条线的投影也形成了图像平面上的一条线,称为 极线。当知道两个相机之间的运动时,这条极线也是可以确定的。但问题是,极线上的哪个点才是 p 1 p_1 p1 对应的点呢?

在 p 1 p_1 p1 周围取 w × w w \times w w×w 大小的像素块,在极线上也取相同大小的块,依次进行比较,直至找到 p 2 p_2 p2,这就是所谓的 块匹配。当然这种方法的前提是 图像块灰度不变性,相较于像素灰度不变性,假设更强了。
把 p 1 p_1 p1 周围的像素块记为 A ∈ R w × w \boldsymbol{A} \in \mathbb{R}^{w \times w} A∈Rw×w,把极线上的 n n n 个小块记为 B i , i = 1 , 2 , . . . , n \boldsymbol{B}_i,i=1,2,...,n Bi,i=1,2,...,n,计算二者之间的差异:
- SAD(Sum of Absolute Difference),两个小块的差的绝对值之和:
S ( A , B ) S A D = ∑ i , j ∣ A ( i , j ) − B ( i , j ) ∣ (11-1) S(\boldsymbol{A},\boldsymbol{B})_{\mathrm{SAD}}=\sum_{i,j}|\boldsymbol{A}(i,j)-\boldsymbol{B}(i,j)| \tag{11-1} S(A,B)SAD=i,j∑∣A(i,j)−B(i,j)∣(11-1)
- SSD(Sum of Squared Distance),即平方和:
S ( A , B ) S S D = ∑ i , j ( A ( i , j ) − B ( i , j ) ) 2 (11-2) S(\boldsymbol{A},\boldsymbol{B})_{\mathrm{SSD}}=\sum_{i,j}(\boldsymbol{A}(i,j)-\boldsymbol{B}(i,j))^2 \tag{11-2} S(A,B)SSD=i,j∑(A(i,j)−B(i,j))2(11-2)
- NCC(Normalized Cross Correlation),归一化互相关,计算两个小块的相关性:
S ( A , B ) N C C = ∑ i , j A ( i , j ) B ( i , j ) ∑ i , j A ( i , j ) 2 ∑ i , j B ( i , j ) 2 (11-3) S(\boldsymbol{A}, \boldsymbol{B})_{\mathrm{NCC}}=\frac{\sum_{i, j} \boldsymbol{A}(i, j) \boldsymbol{B}(i, j)}{\sqrt{\sum_{i, j} \boldsymbol{A}(i, j)^{2} \sum_{i, j} \boldsymbol{B}(i, j)^{2}}} \tag{11-3} S(A,B)NCC=∑i,jA(i,j)2∑i,jB(i,j)2∑i,jA(i,j)B(i,j)(11-3)
相关性越接近于 0 表示越不相似,接近 1 表示相似。
现在,我们在极线上计算了 A \boldsymbol{A} A 与每一个 B i \boldsymbol{B}_i Bi 的相似性度量。这里假设使用 NCC 进行度量,那么,将得到一个沿极线的 NCC分布。我们将使用概率分布描述深度值,而非某个单一数值。于是,问题转化为在不断对不同图像进行极线搜索时,我们估计的深度分布将发生怎样的变化———这就是所谓的 深度滤波器。

11.2.3 高斯分布的深度滤波器
像素点深度的估计,也是一个状态估计问题,于是有滤波器和非线性优化两种方式。但由于 SLAM 实时性要求和算力的限制,一般在建图时采用计算量较小的滤波器进行优化。
假设深度 d d d 符合 高斯分布(也可能是其他分布):
P ( d ) = N ( μ , σ 2 ) (11-4) P(d)=N(\mu, \sigma^2) \tag{11-4} P(d)=N(μ,σ2)(11-4)
每当新的数据到来,我们都会观测它的深度,假设它也符合高斯分布:
P ( d o b s ) = N ( μ o b s , σ o b s 2 ) (11-5) P(d_{\mathrm{obs}})=N(\mu_{\mathrm{obs}}, \sigma_{\mathrm{obs}}^2) \tag{11-5} P(dobs)=N(μobs,σobs2)(11-5)
根据观测到的数据更新原先 d d d 的分布,也就是两个分布相乘,得到融合后的分布 N ( μ f u s e , σ f u s e 2 ) N(\mu_{\mathrm{fuse}}, \sigma_{\mathrm{fuse}}^2) N(μfuse,σfuse2),即
μ fuse = σ o b s 2 μ + σ 2 μ o b s σ 2 + σ o b s 2 , σ fuse 2 = σ 2 σ o b s 2 σ 2 + σ o b s 2 (11-6) \mu_{\text {fuse }}=\frac{\sigma_{\mathrm{obs}}^{2} \mu+\sigma^{2} \mu_{\mathrm{obs}}}{\sigma^{2}+\sigma_{\mathrm{obs}}^{2}}, \quad \sigma_{\text {fuse }}^{2}=\frac{\sigma^{2} \sigma_{\mathrm{obs}}^{2}}{\sigma^{2}+\sigma_{\mathrm{obs}}^{2}} \tag{11-6} μfuse =σ2+σobs2σobs2μ+σ2μobs,σfuse 2=σ2+σobs2σ2σobs2(11-6)
现在关键在于计算 μ o b s \mu_{\mathrm{obs}} μobs 和 σ o b s 2 \sigma_{\mathrm{obs}}^2 σobs2。假设我们找到了 p 1 \boldsymbol{p}_1 p1 对应的点 p 2 \boldsymbol{p}_2 p2,从而观测到了 p 1 \boldsymbol{p}_1 p1 的深度,认为 p 1 \boldsymbol{p}_1 p1 对应的三维点为 P \boldsymbol{P} P。记 O 1 P \boldsymbol{O_1P} O1P 为 p \boldsymbol{p} p, O 1 O 2 \boldsymbol{O_1 O_2} O1O2 为相机平移 t \boldsymbol{t} t, O 2 P \boldsymbol{O_2P} O2P 为 a \boldsymbol{a} a,两个夹角分别为 α \alpha α、 β \beta β。现在考虑极线 l 2 l_2 l2 上存在一个像素大小的误差,使点 p 2 \boldsymbol{p}_2 p2 变为 p 2 ′ \boldsymbol{p}_2' p2′,使 β \beta β 角变为 β ′ \beta ' β′。我们要考虑的是,这个像素误差会导致距离 p \boldsymbol{p} p 和 p ′ \boldsymbol{p'} p′ 产生多大差距。

根据几何关系,
a = p − t \boldsymbol{a}=\boldsymbol{p}-\boldsymbol{t} a=p−t
α = arccos ⟨ p , t ⟩ \alpha=\arccos \langle\boldsymbol{p}, \boldsymbol{t}\rangle α=arccos⟨p,t⟩
β = arccos ⟨ a , − t ⟩ (11-7) \beta=\arccos \langle\boldsymbol{a}, \boldsymbol{-t}\rangle \tag{11-7} β=arccos⟨a,−t⟩(11-7)
对 p 2 \boldsymbol{p}_2 p2 扰动一个像素,使 β \beta β 变为 β ′ \beta ' β′,根据几何关系
β ′ = arccos ⟨ O 2 p 2 ′ , − t ⟩ \beta'=\arccos \langle\boldsymbol{O_2p_2'}, \boldsymbol{-t}\rangle β′=arccos⟨O2p2′,−t⟩
γ = π − α − β ′ (11-8) \gamma=\pi-\alpha-\beta' \tag{11-8} γ=π−α−β′(11-8)
由正弦定理
∥ p ′ ∥ = ∥ t ∥ sin β ′ sin γ (11-9) \|\boldsymbol{p'}\|=\|\boldsymbol{t}\| \frac{\sin\beta'}{\sin \gamma} \tag{11-9} ∥p′∥=∥t∥sinγsinβ′(11-9)
这样,我们就确定了由单个像素的不确定引起的深度不确定性,如果认为极线搜索的块匹配仅有一个像素的误差,那么可以设
σ o b s = ∥ p ∥ − ∥ p ′ ∥ (11-10) \sigma_{\mathrm{obs}}=\|\boldsymbol{p}\|-\|\boldsymbol{p'}\| \tag{11-10} σobs=∥p∥−∥p′∥(11-10)
当极线搜索的不确定性大于一个像素时,可按此推导放大这个不确定性。当不确定性小于某个阈值时,就可认为深度数据收敛。
因此,估计稠密深度的完整过程为:
① 假设所有的像素深度都满足某个初始的高斯分布;
② 当新数据产生时,通过极线搜索和块匹配确定投影点的位置;
③ 根据几何关系计算三角化后的深度及不确定性;
④ 将当前观测融合进上一次估计中,若收敛则停止,否则返回第二步。
需要注意的是,这里的深度是指 O 1 P O_1P O1P 的长度,而针孔相机的深度是指像素的 z z z 值。
11.3 实践:单目稠密重建
11.4 RGB-D 稠密建图
(1)点云:直接由 RGB-D 图像生成,不需要额外处理。
(2)网格/面片
(3)八叉树地图
(4)TSDF
11.4.1 八叉树地图
点云有几个明显的缺点:一是规模太大,有很多无效信息,占据大量空间;二是无法处理运动的物体。因此提出了一种灵活的、可压缩的、能随时更新的地图形式:八叉树地图(Octo-tree)。

左图显示了一个大立方体不断被均分成八块,直到变为最小的块为止。于是,可以将整个大方块看做根节点,最小的块看做叶子结点,当由下一层节点往上走一层时,地图体积就扩大八倍。当某个方块的所有子节点都被占据或都不被占据时,就没必要展开这个节点,例如地图开始为空白,就只需要一个根节点,而不需要完整的树,所以说八叉树比点云更节省空间。
用概率的形式来表达节点是否被占据,比如初始值为 0.5,如果不断观测到它被占据,则值不断增大;如果不断观测到它是空白,则不断减小。当然,如果这个值不断增大或减小,就可能超出 [ 0 , 1 ] [0,1] [0,1] 之外,因此,我们采用 概率对数值 来描述。设 y ∈ R y\in \mathbb{R} y∈R 为概率对数值, x x x 为 0~1 的概率,定义
y = l o g i t ( x ) = log ( x 1 − x ) (11-11) y=\mathrm{logit}(x)=\log(\frac{x}{1-x}) \tag{11-11} y=logit(x)=log(1−xx)(11-11)
其反变换为:
x = l o g i t − 1 ( y ) = exp ( y ) exp ( y ) + 1 (11-12) x=\mathrm{logit}^{-1}(y)=\frac{\exp(y)}{\exp(y)+1} \tag{11-12} x=logit−1(y)=exp(y)+1exp(y)(11-12)
可以看出,当 y y y 从 − ∞ -\infty −∞ 到 + ∞ +\infty +∞ 时, x x x 范围为 0~1,当 y y y 取 0 时, x x x 取 0.5。因此,不妨用 y y y 来表达节点是否被占据,再将其转换为概率 x x x 即可。假设某节点 n n n,观测数据为 z z z,那么从开始到 t t t 时刻该节点的概率对数值为 L ( n ∣ z 1 : t ) L(n|z_{1:t}) L(n∣z1:t), t + 1 t+1 t+1 时刻为
L ( n ∣ z 1 : t + 1 ) = L ( n ∣ z 1 : t − 1 ) + L ( n ∣ z t ) (11-13) L(n|z_{1:t+1})=L(n|z_{1:t-1})+L(n|z_{t}) \tag{11-13} L(n∣z1:t+1)=L(n∣z1:t−1)+L(n∣zt)(11-13)
将其写成概率形式(也就是 x x x),
P ( n ∣ z 1 : T ) = [ 1 + 1 − P ( n ∣ z T ) P ( n ∣ z T ) 1 − P ( n ∣ z 1 : T − 1 ) P ( n ∣ z 1 : T − 1 ) P ( n ) 1 − P ( n ) ] − 1 (11-14) P\left(n \mid z_{1: T}\right)=\left[1+\frac{1-P\left(n \mid z_{T}\right)}{P\left(n \mid z_{T}\right)} \frac{1-P\left(n \mid z_{1: T-1}\right)}{P\left(n \mid z_{1: T-1}\right)} \frac{P(n)}{1-P(n)}\right]^{-1} \tag{11-14} P(n∣z1:T)=[1+P(n∣zT)1−P(n∣zT)P(n∣z1:T−1)1−P(n∣z1:T−1)1−P(n)P(n)]−1(11-14)
有了对数概率,就可根据 RGB-D 数据更新八叉树地图。假设在 RGB-D 图像中某个像素带有深度 d d d,就说明:在深度值对应的空间点上观察到了一个占据数据,并且,从相机光心出发到这个点的线段上应该是没有物体的(否则被遮挡)。
11.4.2 TSDF 地图和 Fusion 系列
实时三维重建
相关文章:
《视觉SLAM十四讲》-- 建图
11 建图 11.1 概述 (1)地图的几类用处: 定位:导航:机器人在地图中进行路径规划;避障重建交互:人与地图之间的互动 (2)几类地图 稀疏地图稠密地图语义地图 11.2 单目…...
智能配电箱柜管理系统
智能配电箱柜管理系统是一个综合性的管理系统,专门设计用于监控和控制智能配电箱和柜的运行。这个系统集成了先进的技术和智能化功能,以确保配电系统的正常运行并提高其效率。依托电易云-智慧电力物联网,以下是智能配电箱柜管理系统的主要特点…...
聊聊近些年 CPU 在微架构、IO 速率上的演进过程
大家好,我是飞哥! 在上一篇《深入了解 CPU 的型号、代际架构与微架构》 中我们介绍了我手头的一颗 Intel(R) Core(TM) i5 的型号规则,以及它的物理硬件的 Die 图结构。以及它对应的 Skylake 核的微架构实现。 不少同学开始问我其它型号的 CPU…...
PS学习笔记——移动工具
文章目录 介绍文档内移动文档间移动 介绍 移动工具:用于移动图层中的对象,并且同一图层中的所有对象都将一起移动 选中移动工具后,选项栏中会出现“显示变换控件”,勾选后即可看见图层中的对象周围出现边框,可以进行缩…...
信息中心网络提出的背景、研究现状及研究内容
信息中心网络什么时候提出的?未来发展前景?有什么著名实验室在做? 1、提出背景: 互联网产生于上世纪60年代: (1)网络设备数量呈指数性增长 截至2022年底全球范围内预计将有超过280亿台终端设…...
【计算机视觉】24-Object Detection
文章目录 24-Object Detection1. Introduction2. Methods2.1 Sliding Window2.2 R-CNN: Region-Based CNN2.3 Fast R-CNN2.4 Faster R-CNN: Learnable Region Proposals2.5 Results of objects detection 3. SummaryReference 24-Object Detection 1. Introduction Task Defin…...
【mac 解决eclipse意外退出】
打开eclipse时提示报错信息应用程序"Eclipse.app"无法打开(这里忘了截图就不上图了)。 点击 “好” 的按钮后会弹出发送报告的弹窗 终端输入:sudo codesign --force --deep --sign - /Applications/Eclipse.app/ 就可以解决了...
mysql innodb buffer pool缓冲池命中率和命中了哪些表?—— 筑梦之路
环境说明 mysql 5.7及以上 公式 # InnoDB缓冲区缓存的命中率计算公式100 * (1 - (innodb_buffer_pool_reads/innodb_buffer_pool_read_requests ))注意: 对于具有大型缓冲池的系统,既要关注该比率,也要关注OS页面读写速率的变化可以更好地跟踪差异。s…...
牛掰的dd命令,cpi0配合find备份(不会主动备份),od查看
dd if设备1或文件 of设备2或文件 blocknsize countn 还原就是把设备1,2调过来 这里想到dump的还原是命令restore,想起来就写一下,省的总忘记 可以针对整块磁盘进行复制,对于新创建的分区,也不用格式化,可以直接…...
pip list 和 conda list的区别
PS : 网上说conda activate了之后就可以随意pip了 可以conda和pip混用 但是安全起见还是尽量用pip 这样就算activate了,进入base虚拟环境了 conda与pip的区别 来源 Conda和pip通常被认为几乎完全相同。虽然这两个工具的某些功能重叠,但它们设计用于不…...
多目标应用:基于多目标灰狼优化算法MOGWO求解微电网多目标优化调度(MATLAB代码)
一、微网系统运行优化模型 微电网优化模型介绍: 微电网多目标优化调度模型简介_IT猿手的博客-CSDN博客 二、多目标灰狼优化算法MOGWO 多目标灰狼优化算法MOGWO简介: 三、多目标灰狼优化算法MOGWO求解微电网多目标优化调度 (1)…...
LangChain 2模块化prompt template并用streamlit生成网站 实现给动物取名字
上一节实现了 LangChain 实现给动物取名字, 实际上每次给不同的动物取名字,还得修改源代码,这周就用模块化template来实现。 1. 添加promptTemplate from langchain.llms import OpenAI # 导入Langchain库中的OpenAI模块 from langchain.p…...
linux nas
挂载到本地 mkdir -p /mnt/mountnasdir mount -t nfs 192.168.62:/cnas_id10086_vol10010_dev/ /mnt/mountnasdir...
控制您的音乐、视频等媒体内容
跨多个 Chrome 标签页播放音乐或声音 在计算机上打开 Chrome 。在标签页中播放音乐、视频或其他任何有声内容。您可以停留在该标签页上,也可以转到别处。要控制声音,请在右上角点击“媒体控件”图标 。您可暂停播放、转到下一首歌曲/下一个视频…...
xlua源码分析(三)C#访问lua的映射
xlua源码分析(三)C#访问lua的映射 上一节我们主要分析了lua call C#的无wrap实现。同时我们在第一节里提到过,C#使用LuaTable类持有lua层的table,以及使用Action委托持有lua层的function。而在xlua的官方文档中,推荐使…...
2023 极术通讯-汽车“新四化”路上,需要一片安全山海
导读:极术社区推出极术通讯,引入行业媒体和技术社区、咨询机构优质内容,定期分享产业技术趋势与市场应用热点。 芯方向 【Armv9】-动态TrustZone技术的介绍 动态 TrustZone 是提供多租户安全媒体 pipeline 的绝佳工具。完全不受操作系统、虚…...
Spring Boot接口设计规范
接口参数处理及统一结果响应 1、接口参数处理 1、普通参数接收 这种参数接收方式是比较常见的,由于是GET请求方式,所以在传参时直接在路径后拼接参数和参数值即可。 例如:localhost:8080/api/product/list?key1value1&key2value2 /…...
美创科技与南京大数据安全技术有限公司达成战略合作
近日,美创科技与南京大数据安全技术有限公司正式签署战略合作协议,优势力量共享、共拓共创共赢。 美创科技CEO柳遵梁、副总裁罗亮亮、副总裁王利强,南京大数据安全技术有限公司总经理潘杰、市场总监刘莉莎、销售总监王皓月、技术总监薛松等出…...
2.4路由日志管理
2.4路由/日志管理 一、静态路由和动态路由 路由器在转发数据时,需要现在路由表中查找相应的路由,有三种途径 (1)直连路由:路由器自动添加和自己直连的路由 (2)静态路由:管理员手动…...
归并排序详解:递归实现+非递归实现(图文详解+代码)
文章目录 归并排序1.递归实现2.非递归实现3.海量数据的排序问题 归并排序 时间复杂度:O ( N * logzN ) 每一层都是N,有log2N层空间复杂度:O(N),每个区间都会申请内存,最后申请的数组大小和array大小相同稳定…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
汽车生产虚拟实训中的技能提升与生产优化
在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...
Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
postgresql|数据库|只读用户的创建和删除(备忘)
CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...
2021-03-15 iview一些问题
1.iview 在使用tree组件时,发现没有set类的方法,只有get,那么要改变tree值,只能遍历treeData,递归修改treeData的checked,发现无法更改,原因在于check模式下,子元素的勾选状态跟父节…...
DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...
