当前位置: 首页 > news >正文

基于变形卷积和注意机制的带钢表面缺陷快速检测网络DCAM-Net(论文阅读笔记)

原论文链接->DCAM-Net: A Rapid Detection Network for Strip Steel Surface Defects Based on Deformable Convolution and Attention Mechanism | IEEE Journals & Magazine | IEEE Xplore

DCAM-Net: A Rapid Detection Network for Strip
Steel Surface Defects Based on Deformable
Convolution and Attention Mechanism(论文标题)

 

Abstract(摘要)

 

带钢(the strip steel)表面缺陷检测是带钢生产中的关键环节,是提高带钢生产质量的重要保证。然而,由于带钢表面缺陷图像的对比度差(poor contrast),缺陷类型(defect types)、尺度(scales)、纹理结构的多样性(texture structures)以及缺陷分布的不规则性(irregular distribution),使得现有方法难以实现带钢表面缺陷的快速、准确检测。本文提出了一种带钢快速检测网,基于可变形卷积和注意机制(deformable convolution and attention mechanism),即DCAM-Net

首先,我们引入限制对比度自适应直方图均衡化 (传送门->CLAHE)作为数据增强方法(a data augmentation method),以提高缺陷图像的对比度,并突出(highlight)带钢表面图像上的缺陷特征。

其次,我们提出了一种新的(a novel)增强型变形特征提取模块(enhanced deformation-feature extraction block)(EDE-block),去解决复杂多样的以及不规则分布的带钢缺陷。通过融合变形卷积,扩展了缺陷特征提取网络的接收域,以捕获完整和全面的缺陷纹理特征。

最后,我们引入坐标注意力模块(coordination attention)(CA),以取代骨干网络(backbone)的空间金字塔池(SPP)结构,进一步分解池操作,有效地提高了网络的缺陷定位能力。在NEU-DET数据集上的实验结果表明所提出的算法的平均精度(the mean Average Precision)(mAP@loU=0.5)为82.6%,比基线网络提高了7.3%的检测速度,达到100.2帧(fps),有效提高了带钢表面缺陷的检测效率

 

Index Terms — Attention mechanism, coordinate attention, deformable convolution, object detection, surface defect detection, YOLOX.
索引词——注意力机制,坐标注意力,可变性卷积,目标检测,表面缺陷检测,YOLOX网络

 

 I. INTRODUCTION(引入)

 

①由于带钢生产工艺、环境等问题质量导致带钢存在各自缺陷,本文指出缺陷检测技术是保证高质量带钢生产的关键步骤,能够自动化程度和生产效率,降低质检人员劳动强度、成本,提高钢铁企业的市场竞争力,所以具有广泛的应用前景。

 

②缺陷检测问题,通常采用传统的图像处理与机器学习相结合的方法,主要检测缺陷的边缘形状、纹理信息、灰度变换等特征。例如,对于具有单一背景的缺陷图像,一些边缘检测算子,如SobelCanny,可用于定位简单的缺陷。对于具有周期性纹理背景的缺陷小波变换(wavelet transforms)和周期性的加伯变换(Gabor transforms)可用于将图像从空间域变换到频域进行检测。这种方法还可以表征图像的统计特性,如灰度差和灰度直方图。此外,缺陷可以通过传统的机器学习方法进行分类,如SVMrandom forest。传统的方法通常需要通过手工设计(manual design)来描述缺陷特征。而且,基于人的主观性(subjectivity),手工设计的特征很难分辨出工业表面缺陷。而面对未知且多样的缺陷类型,这些检测方法的泛化能力往往较差(poor generalization ability)。因此,当面对更复杂和不规则的缺陷时,传统的方法难以在实际的工业应用场景中应用。

 

③接着论文介绍了目标检测的部分发展历程——

Girshick开发R-CNN,此后目标检测像滚雪球一样迅速发展(object detection has snowballed)-->提出SPPnet->提出fast R-CNN,结合R-CNN和SPPnet的优点提高检测效率-->提出faster R-CNN,即使用RPN代替fast R-CNN来生成区域建议,显著提高检测速率-->YOLOv1将目标检测问题统一为回归问题-->Redmon and Farhadi提出YOLO9000,提高YOLOv1的召回和定位能力-->两人又提出YOLOv3,利用ResNet残差思想进一步提高检测速度和准确性-->Bochkovskiy等人提出YOLOv4,在neck部分的特征金字塔网络(FPN)中添加了路径聚合网络(PAN),有效提高训练速率-->YOLOv5被提出,该模型对输入图像大小进行校正,并利用k-均值对锚框(anchor)进行聚类,在计算过程中自适应计算锚框,同时在FPN中应用跨阶段部分(CSP)模块,在保证检测精度的同时显著提高检测速度,相对降低模型参数-->基于YOLOv3的YOLOX被提出,YOLOX首先用CSPDarknet53取代了主干网络(backbone),以进一步增强特征提取。其次,将传统的头改进为解耦的头(decoupled head),提高了检测网络的收敛速度和表达能力。最后,采用anchor-free代替anchor-based生成锚框,大大减少了许多锚框造成的计算和耗时问题,提高了检测网络的泛化能力和检测速度(不需要预定义锚框,因此能够更加自适应地检测不同尺寸、不同比例的目标)。

 

④论文继续介绍历程——

2020年,一种多层次特征网络(a multilevel feature network)被提出,其思想是将多层次特征结合成一个特征,以此来获得带钢表面缺陷位置的更多细节。

2021年,Kou等人将YOLOv3算法应用于带钢表面缺陷图像的数据集NEU-DET,平均精度(mAP)效应达到72.2%,说明YOLOv3在带钢表面缺陷检测中的适用性。Cheng和Yu提出了结合注意机制和自适应空间特征融合模块RetinaNet,有效地提高了对带钢表面缺陷的检测效果。Xing和Jia设计了一种新的损失函数XIOU,以更好地检测带钢表面缺陷。Gao等人提出了一个模块特征收集(a module for feature collection)和压缩网络(compression network)用来合并多尺度特征信息(multiscale feature information),并提供了一种新的高斯加权池方法取代ROI池,在NEU-DET数据集中达到了80.0%的mAP效应以及实现了64.0帧的检测速度,满足工业实时检测(industrial real-time detection)的应用要求。

2022年,Wang等人设计了一种噪声正则化(regularization)策略,可以更好地提高训练模型的鲁棒性,因为带钢表面不良图像的噪声会导致模型崩溃(model collapse)。Li等人提出了一种改进的YOLOv5网络模型,用于检测带钢表面的微小缺陷(minor defects)。在模型中嵌入了注意模块CBAM,并优化(be optimized)了检测网络结构和损失函数。在自构建的工业缺陷数据集(self-constructed industrial defect dataset)的mAP值达到91.0%。

 

⑤论文开始指出问题——

从以上综述中可以看出,近年来对带钢表面缺陷检测算法的研究,已经不同程度地提高了深度学习模型的检测精度(detection accuracy)和检测速度(detection speed),取得了良好的检测效果。然而,在带钢表面缺陷检测中,不同缺陷表面的缺陷类型、尺寸、形状和纹理特征的复杂性(complexity)仍然是一个常见的问题,使得缺陷难以准确检测,不规则的缺陷分布(irregular defect distribution)增加了检测的难度。此外,由于摄影设备和照明(illumination)的影响,带钢表面部分缺陷的图像存在对比度较低(low contrast)的问题。缺陷与背景对比度低,导致带钢表面成像后噪声较大,严重干扰(interferes)算法的缺陷检测,容易导致检测遗漏(missed detection)。

 

⑥因此,为了提高目标检测算法在钢板表面缺陷检测中的准确性和适用性,本文借鉴文献的方法,以YOLOX为目标检测模型的基础,构建了基于可变形卷积注意力机制(deformable convolution and attention mechanism)的快速检测带钢表面缺陷DCAM-Net网络,如图Fig. 1所示。

cfee4feb07f642d9aa789a3f221960a6.png

Fig. 1. Overall architecture of the DCAM-Net.

 


 

II. DCAM-NET
A. Baseline Networks
论文指出深度学习的锚框的生成模式尤为重要,评价YOLO系列的检测头采用的聚类生成锚框的模式会带来两个问题——
①聚类方法会导致模型在不同数据集上的 泛化能力较差,训练后生成的锚框大多不能使用,导致大量的计算冗余,从而提高了计算成本和检测速度。
②在带钢的表面缺陷图像数据中,由于缺陷之间的显著差异,聚类得到的锚框的大小容易不稳定,会在一定程度上影响检测网络模型的检测效果。
对比YOLO系列网络——
①YOLOX检测头部分用无锚定(anchor-free)技术取代了基于锚定的技术。采用匈牙利算法作为参考,并设计了简化最优传输分配(SimOTA)匹配算法,以减少模型训练过程中的许多冗余锚框。
②YOLOX不需要手动调整锚框的大小,从而提高了模型对不同图像的泛化能力。YOLOX对YOLOv3上的一系列改进有效地提高了检测效果和速度,特别对不同图像上的 泛化性(generalization ability to different images)。
因此,论文综合考虑了基于无锚框的YOLOX的优势,决定将其作为基线网络(baseline)。
论文又指出YOLOX也存在不足——
①由于残余结构的设计问题,YOLOX的骨干网络难以更好地改进带钢表面缺陷特征的提取。
②由于 动态样本匹配(dynamic sample matching)的问题,YOLOX在检测不规则缺陷对象方面的性能较差。与YOLO系列中传统的anchor-based的方法相比,YOLOX对复杂纹理的缺陷对象的检测性能较差,精度较低。
因此,YOLOX仍有一定的改进空间。
论文顺势引出自己的改进——
为了提高YOLOX算法在带钢表面缺陷检测中的性能,我们设计了一种基于可变形卷积和注意力机制(deformable convolution and attention mechanism)的带钢表面缺陷检测网络,如图Fig. 1所示。
首先,我们引入 限制对比度自适应直方图均衡化(the contrast limited adaptive histogram equalization)(CLAHE)作为一种 数据增强方法来提高缺陷图像的对比度,并突出带钢表面图像上的缺陷特征。
其次,针对复杂、不规则的带钢缺陷设计了 增强变形特征提取块(enhanced deformation-feature extraction block)(EDE-block)。通过融合(by fusing)可变形卷积(deformable convolution),扩展缺陷特征提取网络的 感受野(receptive field),以捕获完整而全面(complete and comprehensive)的缺陷纹理特征(defect texture features)。
最后,引入坐标(coordinate)注意力模块(CA)来替代backbone部分的SPP结构,有效增强了网络定位缺陷(locate the defect feature)的能力。

太长了今天先读这么多吧。。。/(ㄒoㄒ)/~~-------------------------2023/11/20 

 

 

相关文章:

基于变形卷积和注意机制的带钢表面缺陷快速检测网络DCAM-Net(论文阅读笔记)

原论文链接->DCAM-Net: A Rapid Detection Network for Strip Steel Surface Defects Based on Deformable Convolution and Attention Mechanism | IEEE Journals & Magazine | IEEE Xplore DCAM-Net: A Rapid Detection Network for Strip Steel Surface Defects Base…...

05-Spring Boot工程中简化开发的方式Lombok和dev-tools

简化开发的方式Lombok和dev-tools Lombok常用注解 Lombok用标签方式代替构造器、getter/setter、toString()等重复代码, 在程序编译的时候自动生成这些代码 注解名功能NoArgsConstructor生成无参构造方法AllArgsConstructor生产含所有属性的有参构造方法,如果不希望含所有属…...

AIGC 技术在淘淘秀场景的探索与实践

本文介绍了AIGC相关领域的爆发式增长,并探讨了淘宝秀秀(AI买家秀)的设计思路和技术方案。文章涵盖了图像生成、仿真形象生成和换背景方案,以及模型流程串联等关键技术。 文章还介绍了淘淘秀的使用流程和遇到的问题及处理方法。最后,文章展望…...

ANSYS网格无关性检查

网格精度对应力结果存在很大的影响,有时候可以发现,随着网格精度逐渐提高,所求得的最大应力值逐渐趋于收敛。 默认网格: 从默认网格下计算出的应力云图可以发现,出现了的三处应力奇异点,此时算出的应力值是…...

设计模式-责任链-笔记

动机(Motivation) 在软件构建过程中,一个请求可能被多个对象处理,但是每个请求在运行时只能有个接受者,如果显示指定,将必不可少地带来请求者与接受者的紧耦合。 如何使请求的发送者不需要指定具体的接受…...

SpringMvc请求原理流程

springmvc是用户和服务沟通的桥梁,官网提供了springmvc的全面使用和解释:DispatcherServlet :: Spring Framework 流程 1.Tomcat启动 2.解析web.xml文件,根据servlet-class找到DispatcherServlet,根据init-param来获取spring的…...

【开源】基于Vue.js的音乐偏好度推荐系统的设计和实现

项目编号: S 012 ,文末获取源码。 \color{red}{项目编号:S012,文末获取源码。} 项目编号:S012,文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、系统设计2.1 功能模块设计2.1.1 音乐档案模块2.1…...

采集1688整店商品(店铺所有商品、店铺列表api)

返回数据: 请求链接 {"user": [],"items": {"item": [{"num_iid": "738354436678","title": "国产正品i13 promax全网通5G安卓智能手机源头厂家批发手机","pic_url": "http…...

IObit Unlocker丨解除占用程序软件

更多内容请收藏:https://rwx.tza-3.xyz 官网:IObit Unlocker “永远不用担心电脑上无法删除的文件。” 界面简单,支持简体中文,一看就会,只需要把无法删除/移动的文件或整个U盘拖到框里就行。 解锁率很高,…...

开发一款小程序游戏需要多少钱?

小程序游戏的开发成本因多种因素而异,无法提供具体的固定数字。以下是影响小程序游戏开发成本的一些关键因素: 游戏规模和复杂度: 小程序游戏可以是简单的休闲游戏,也可以是更复杂的策略游戏。规模和复杂度会影响开发所需的时间和…...

基于Vue+SpringBoot的校园电商物流云平台开源项目

项目编号: S 034 ,文末获取源码。 \color{red}{项目编号:S034,文末获取源码。} 项目编号:S034,文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 商品数据模块2.3 快…...

庖丁解牛:NIO核心概念与机制详解 03 _ 缓冲区分配、包装和分片

文章目录 Pre概述缓冲区分配和包装 (allocate 、 wrap)缓冲区分片 (slice)缓冲区份片和数据共享只读缓冲区 (asReadOnlyBuffer)直接和间接缓冲区 (allocateDirect)内存映射文件 I/O将文件映射到内存(map) Pre 庖丁解牛&#xff1…...

002 OpenCV dft 傅里叶变换

目录 一、傅里叶变换 1.1 傅里叶变换概念 1.2 opencv中傅里叶变换 二、实验代码 一、环境 本文使用环境为: Windows10Python 3.9.17opencv-python 4.8.0.74 二、傅里叶变换 2.1 傅里叶变换概念 傅里叶变换(Fourier Transform)是一种…...

力扣:171. Excel 表列序号(Python3)

题目: 给你一个字符串 columnTitle ,表示 Excel 表格中的列名称。返回 该列名称对应的列序号 。 例如: A -> 1 B -> 2 C -> 3 ... Z -> 26 AA -> 27 AB -> 28 ... 来源:力扣(LeetCode) …...

C++中结构体的初始化

C中结构体的初始化 结构体是一个由程序员定义的数据类型,可以容纳许多不同的数据值。在过去,面向对象编程的应用尚未普及之前,程序员通常使用这些从逻辑上连接在一起的数据组合到一个单元中。一旦结构体类型被声明并且其数据成员被标识&…...

vue3+vite+ts 发布自定义组件到npm

vue3vite 发布自定义组件到npm 初始化项目编写组件配置打包组件上传到npm测试组件库 初始化项目 // 创建项目 pnpm create vite vue-test-app --template vue-ts// 运行项目 cd vite vue-test-app pnpm install pnpm run dev编写组件 1、根目录下创建packages目录作为组件的开…...

mybatis使用xml形式配置

以这个注解形式的查询代码为例 Select("select * from emp where name like concat(%,#{name},%) and gender #{gender} and entrydate between #{begin} and #{end} order by update_time desc ")public List<Emp> list(String name, Short gender, LocalDat…...

开源简历生成器OpenResume

什么是 OpenResume &#xff1f; OpenResume 是一个功能强大的开源简历生成器和简历解析器。OpenResume 的目标是为每个人提供免费的现代专业简历设计&#xff0c;让任何人都能充满信心地申请工作。 OpenResume 有 5 个核心特点&#xff1a; 特征描述1. 实时UI更新当您输入简历…...

AI变现之Gpts搞流量+赚钱

文章目录 Gpts | 搞流量 + 赚钱1.项目介绍2.项目分析3.项目实操4.变现路径Gpts | 搞流量 + 赚钱 1.项目介绍 这两天 AI 圈最火的莫过于 OpenAI 开发者大会公布的一个爆炸产品 Gpts 了,大家都知道这个肯定是一个划时代的产品,也绝对是一个风口,虽然官方还没有公布到底怎么通…...

音视频项目—基于FFmpeg和SDL的音视频播放器解析(十六)

介绍 在本系列&#xff0c;我打算花大篇幅讲解我的 gitee 项目音视频播放器&#xff0c;在这个项目&#xff0c;您可以学到音视频解封装&#xff0c;解码&#xff0c;SDL渲染相关的知识。您对源代码感兴趣的话&#xff0c;请查看基于FFmpeg和SDL的音视频播放器 如果您不理解本…...

Elasticsearch文档操作

一、Elasticsearch的CURD 1、CURD之Create PUT lqz/doc/1 {"name":"顾老二","age":30,"from": "gu","desc": "皮肤黑、武器长、性格直","tags": ["黑", "长", "直…...

聊一聊go的单元测试(goconvey、gomonkey、gomock)

文章目录 概要一、测试框架1.1、testing1.2、stretchr/testify1.3、smartystreets/goconvey1.4、cweill/gotests 二、打桩和mock2.1、打桩2.2、mock2.2.1、mockgen2.2.1、示例 三、基准测试和模糊测试3.1、基准测试3.2、模糊测试 四、总结4.1、小结4.2、其他4.3、参考资料 概要…...

Positive Technologies 利用 PT Cloud Application Firewall 保护中小型企业的网络资源

云产品按月订购&#xff0c;无需购买硬件资源 PT Cloud Application Firewall 是 Positive Technologies 推出的首个用于保护网络应用程序的商用云产品。Web 应用层防火墙 (web application firewall, WAF) 现在可以通过 技术合作伙伴——授权服务商和云提供商以订购方式提供1…...

深入解析序列模型:全面阐释 RNN、LSTM 与 Seq2Seq 的秘密

探索序列建模的基础知识和应用。 简介 序列建模是许多领域的一个重要问题&#xff0c;包括自然语言处理 (NLP)、语音识别和语音合成、时间序列预测、音乐生成和「生物信息学」。所有这些任务的共同点是它们需要坚持。接下来的事情的预测是基于历史的。例如&#xff0c;在“哈桑…...

vue项目本地开发构建速度优化 hard-source-webpack-plugin

1、为啥要优化本地构建速度 有些项目因为项目需求点多、功能复杂、管理混乱、引入第三方插件/样式库过多、本身项目页面较多、文件较多等等原因&#xff0c;会导致项目体积变大、本地构建速度明显变慢&#xff0c;这时就需要对项目webpack进行一些设置来提高打包效率、加快打包…...

燕之屋通过港交所聆讯:苦战IPO十余年,黄健等人提前精准套现

撰稿|行星 来源|贝多财经 11月19日&#xff0c;厦门燕之屋生物工程股份有限公司&#xff08;下称“燕之屋”&#xff09;通过港交所聆讯&#xff0c;并披露了聆讯后资料集&#xff08;即招股书&#xff09;&#xff0c;中金公司和广发证券为其联席保荐人。 据贝多财经了解&a…...

【51单片机系列】C51基础

本文内容是关于C51语言的基础内容的&#xff0c;包括C51的数据类型、变量、运算符、函数以及reg52.h文件中的内容&#xff0c;有些与C中相同的内容没有记录在此&#xff0c;比如常量、某些变量、表达式、程序结构、数组等没有涉及。 文章目录 C51的数据类型1. C51中的基本数据类…...

openssl1.0.2版本Windows安装问题

之前安装过1.1版本&#xff0c;Windows环境下C 安装OpenSSL库 源码编译及使用&#xff08;VS2019&#xff09;_vs2019安装openssl_肥宝Fable的博客-CSDN博客 后来发现linux编译不过&#xff0c;以为是版本问题&#xff0c;相差太大&#xff0c;所以降一下版本&#xff0c;以免…...

【Java 进阶篇】Ajax 实现——原生JS方式

大家好&#xff0c;欢迎来到这篇关于原生 JavaScript 中使用 Ajax 实现的博客&#xff01;在前端开发中&#xff0c;我们经常需要与服务器进行数据交互&#xff0c;而 Ajax&#xff08;Asynchronous JavaScript and XML&#xff09;是一种用于创建异步请求的技术&#xff0c;它…...

Spring Cloud Stream实践

概述 不同中间件&#xff0c;有各自的使用方法&#xff0c;代码也不一样。 可以使用Spring Cloud Stream解耦&#xff0c;切换中间件时&#xff0c;不需要修改代码。实现方式为使用绑定层&#xff0c;绑定层对生产者和消费者提供统一的编码方式&#xff0c;需要连接不同的中间…...