利用OpenCV做个熊猫表情包 二
之前写了一篇
利用OpenCV做个熊猫表情包吧_Leen的博客-CSDN博客
回想起来觉得有点太弱了,意犹未尽,每次使用需要自己去手动截取人脸,清除黑边什么的才能使用demo去合成表情,无奈之前由于安装的vs,opencv版本都比较低,也懒得再折腾。
恰逢前些天电脑硬盘坏了,数据丢了,一切都要重装,那直接高配走起,VS2022+OpenCV4.8,既然环境都有了,于是有空的时候就改进了一下,让它利用opencv,做简单的人脸识别,自动去图片中识别、提取人脸,同时去做黑边清理工作,自动化程度更高,用起来更省事儿~
原理呢就是在处理原始图片的流程中加入了面部识别,将面部单独切出来,同时对面部图片做黑边清晰处理,然后再进行表情的合成工作,下面介绍一下具体过程:
首先是识别到用户输入的原图

利用opencv进行面部识别

灰度化图片后提取面部,并清理黑边

再将面部跟熊猫脸进行融合

下面介绍关键步骤的代码:
初始化面部识别
int InitFaceDetect()
{if (!faceCascade.load("D:\\Workspace\\opencv\\build\\etc\\haarcascades\\haarcascade_frontalface_default.xml")) {cout << "人脸检测级联分类器没找到!!" << endl;return -1;}if (!eyes_Cascade.load("D:\\Workspace\\opencv\\build\\etc\\haarcascades\\haarcascade_eye_tree_eyeglasses.xml")) {cout << "眼睛检测级联分类器没找到!!" << endl;return -1;}return 0;
}
用到的两个xml特征文件均为openCV提供。
清楚灰度图像中的深色边角区域
/************************************************************************/
/* 消除图片四周的黑色边角区域 */
/************************************************************************/Mat RemoveBlackCorner(Mat img)
{int i, j;int h = img.size().height;int w = img.size().width;if (img.channels() == 1) //灰度图片{for (j = 0; j < h; j++){for (i = 0; i < w; i++){if (img.at<uchar>(j, i) < 110){img.at<uchar>(j, i) = 255;}else{break;}}for (i = w - 1; i >= 0; i--){if (img.at<uchar>(j, i) < 110){img.at<uchar>(j, i) = 255;}else{break;}}}for (i = 0; i < w; i++){for (j = 0; j < h; j++){if (img.at<uchar>(j, i) < 110){img.at<uchar>(j, i) = 255;}else{break;}}for (j = h - 1; j >= 0; j--){if (img.at<uchar>(j, i) < 110){img.at<uchar>(j, i) = 255;}else{break;}}}}return img;
}
人脸识别以及将加工后的人脸存成临时文件
bool parse_cmd(int argc, char* argv[])
{if (argc < 3){return false;}g_str_src = string(argv[1]);g_str_bg = string(argv[2]);return true;
}string GetFolderFromFile(string strFile)
{size_t last_slash = strFile.find_last_of("\\");std::string directory = strFile.substr(0, last_slash);return directory;
}int DetectFace(Mat img, Mat imgGray) {namedWindow("src", WINDOW_AUTOSIZE);vector<Rect> faces, eyes;faceCascade.detectMultiScale(imgGray, faces, 1.2, 5, 0, Size(30, 30));int retVal = -1;//目前只取一个脸if (faces.size() > 0) {for (size_t i = 0; i < faces.size(); i++) {//框出人脸位置rectangle(img, Point(faces[i].x+ faces[i].width / 8, faces[i].y+faces[i].height / 8), Point(faces[i].x + faces[i].width*7/8, faces[i].y + faces[i].height * 7 / 8), Scalar(0, 0, 255), 1, 8);cout << faces[i] << endl;//将人脸从灰度图中抠出来Mat face_ = imgGray(faces[i]);//缩小一点,默认取的矩形比较大Rect rect(Point(faces[i].width / 8, faces[i].height / 8),Point(faces[i].width * 7 / 8, faces[i].height * 7/ 8));Mat ROI = face_(rect);//RemoveBlackBorder(ROI, ROI);Mat imgOut = RemoveBlackCorner(ROI);//RemoveBlackBorder(ROI, imgOut);imwrite(g_str_face, imgOut);retVal = 0;eyes_Cascade.detectMultiScale(face_, eyes, 1.2, 2, 0, Size(30, 30));for (size_t j = 0; j < eyes.size(); j++) {Point eye_center(faces[i].x + eyes[j].x + eyes[j].width / 2, faces[i].y + eyes[j].y + eyes[j].height / 2);int radius = cvRound((eyes[j].width + eyes[j].height) * 0.25);circle(img, eye_center, radius, Scalar(65, 105, 255), 4, 8, 0);}}}imshow("src", img);return retVal;
}
主逻辑流程
int main(int argc, char* argv[])
{if (!parse_cmd(argc, argv)){cout << "command error" << endl;return -1;}if (InitFaceDetect() != 0){return -1;}//string strDirBase = GetFolderFromFile(g_str_src);Mat img_src = imread(g_str_src);Mat img_background = imread(g_str_bg);g_str_face = strDirBase + "\\tmp_face.jpg";
#ifdef _DBG_SHOWnamedWindow("img_src");imshow("img_src", img_src);
#endifMat img_gray;cvtColor(img_src, img_gray, COLOR_BGR2GRAY); //图像灰度化int nFace = DetectFace(img_src, img_gray);waitKey(3000);
#ifdef _DBG_SHOWnamedWindow("gray", WINDOW_NORMAL);imshow("gray", img_gray);
#endif// 按照背景图大小等比缩放Size dsize = Size(img_background.cols * 0.55, img_background.rows * 0.55);//判断一下是否自动检测到了人脸Mat img_face;if (nFace == 0) {cout << "opencv find face,get face." << endl;img_face = imread(g_str_face);}else{cout << "can not find face.use image user input." << endl;img_face = img_gray;}resize(img_face, img_face, dsize, 1, 1, INTER_AREA);//输出缩放后效果图并重新加载Mat img_face2;threshold(img_face, img_face2, 105, 255, THRESH_BINARY);imwrite(strDirBase + "\\tmp.jpg", img_face2);//imshow("img_face2", img_face2);Mat img_face3 = imread(strDirBase + "\\tmp.jpg");//居中粘合两图Rect roi_rect = Rect((img_background.cols - img_face3.cols) / 2, (img_background.rows - img_face3.rows) / 2, img_face3.cols, img_face3.rows);img_face3.copyTo(img_background(roi_rect));//显示并输出imshow("mixed", img_background);imwrite(g_str_src + ".emoji.jpg", img_background);waitKey(5000);destroyAllWindows();return 0;
}
相关文章:
利用OpenCV做个熊猫表情包 二
之前写了一篇 利用OpenCV做个熊猫表情包吧_Leen的博客-CSDN博客 回想起来觉得有点太弱了,意犹未尽,每次使用需要自己去手动截取人脸,清除黑边什么的才能使用demo去合成表情,无奈之前由于安装的vs,opencv版本都比较低…...
华纳云服务器怎么清理cdn缓存?
清理 CDN(内容分发网络)缓存通常需要通过 CDN 提供商的管理界面或 API 进行操作。不同的 CDN 提供商可能有不同的方法和步骤,以下是一个通用的清理 CDN 缓存的一般步骤: 1. 登录到 CDN 提供商的管理界面: 打开你所使用的 CDN 提供商的网站。 …...
python functools.wraps保留被装饰函数属性
作用 普通装饰器 ,会覆盖函数名称,并且 会替换 函数 文档字符串 介绍 functools.wraps(wrapped[, assigned][, updated]) This is a convenience function for invoking partial(update_wrapper, wrappedwrapped, assignedassigned, updatedupdated) …...
【多线程 - 11、死锁】
死锁 1、介绍 在 Java 中使用多线程,就会有可能导致死锁问题。死锁会让程序一直卡住,程序不再往下执行。只能通过中止并重启的方式来让程序重新执行。要尽可能避免死锁的情况发生 2、造成死锁的原因 互斥条件: 同一资源同时只能由一个线程读…...
flask实现session开发
要在Flask应用中实现会话(session)开发,你可以使用Flask内置的session模块。以下是一个示例代码,演示在Flask应用中启用和使用会话功能: from flask import Flask, session, redirect, url_for, requestapp Flask(__…...
paddle dataset
paddle实现图像旋转 import numpy as np from PIL import Image from matplotlib import pyplot as plt from paddle.vision.transforms import functional as F import cv2imagecv2.imread(./1.jpg) imagecv2.cvtColor(image,cv2.COLOR_BGR2RGB)# 图像旋转 opencv # imgR90 …...
接口自动化测试实战:JMeter+Ant+Jenkins+钉钉机器人群通知完美结合
前言 一、本地JAVA环境安装配置,安装JAVA8和JAVA17 二、安装和配置Jmeter 三、安装和配置ant 四、jmeter + ant配置 五、jenkins安装和配置持续构建项目 六、jenkins配置流程 前言 搭建jmeter+ant+jenkins环境有些前提条件,那就是要先配置好java环境,本地java环境…...
HAL库STM32串口开启DMA接收数据
STM32CubeMx的配置 此博客仅仅作为记录,这个像是有bug一样,有时候好使,有时候不好,所以趁现在好使赶紧记录一下,很多地方用到串口接收数据,DMA又是一种非常好的接收方式,可以节约CPU的时间&…...
Web安全研究(五)
Automated WebAssembly Function Purpose Identification With Semantics-Aware Analysis WWW23 文章结构 introbackgroundsystem design abstraction genapplying abstractionsclassifier data collection and handling data acquisitionstatistics of collected datamodule-…...
2023.11.17-hive调优的常见方式
目录 0.设置hive参数 1.数据压缩 2.hive数据存储格式 3.fetch抓取策略 4.本地模式 5.join优化操作 6.SQL优化(列裁剪,分区裁剪,map端聚合,count(distinct),笛卡尔积) 6.1 列裁剪: 6.2 分区裁剪: 6.3 map端聚合(group by): 6.4 count(distinct): 6.5 笛卡尔积: 7…...
ts 联合react 实现ajax的封装,refreshtoken的功能
react ts混合双打,实现ajax的封装,以及401的特殊处理 import axios from axios import {AMDIN_EXPIRES_KEY,AMDIN_KEY,AMDIN_REFRESH_EXPIRES_KEY,AMDIN_REFRESH_KEY,COMMID_KEY,getToken,removeToken } from ../utils/user-token import { showMessage…...
CISP模拟试题(一)
免责声明 文章仅做经验分享用途,利用本文章所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,作者不为此承担任何责任,一旦造成后果请自行承担!!! 1.下面关于信息安全保障的说法错误的是:C A.信息安全保障的概念是与信息安全的概念同时产生的 …...
轻量封装WebGPU渲染系统示例<35>- HDR环境数据应用到PBR渲染材质
当前示例源码github地址: https://github.com/vilyLei/voxwebgpu/blob/feature/rendering/src/voxgpu/sample/BasePbrMaterialTest.ts 当前示例运行效果: 微调参数之后的效果: 此示例基于此渲染系统实现,当前示例TypeScript源码如下: export class BasePbrMateri…...
春秋云境靶场CVE-2022-28512漏洞复现(sql手工注入)
文章目录 前言一、CVE-2022-28512靶场简述二、找注入点三、CVE-2022-28512漏洞复现1、判断注入点2、爆显位个数3、爆显位位置4 、爆数据库名5、爆数据库表名6、爆数据库列名7、爆数据库数据 总结 前言 此文章只用于学习和反思巩固sql注入知识,禁止用于做非法攻击。…...
数字化文化的守护之星:十八数藏的非遗创新之道
在数字时代的浪潮中,十八数藏犹如一颗璀璨的守护之星,为传统文化注入了新的生命力。这个非遗创新项目以数字化为工具,以守护为使命,开辟了文化传承的新航道。 十八数藏是文化数字守护的引领者,通过数字技术࿰…...
[机缘参悟-119] :反者道之动与阴阳太极
目录 一、阴阳对立、二元对立的规律 1.1 二元对立 1.2 矛盾的对立与统一 二、阴阳互转、阴阳变化、变化无常 》无序变化和有序趋势的规律 三、阴阳合一、佛魔一体、善恶同源 四、看到积极的一面 五、反者道之动 5.1 概述 5.2 "否极泰来" 5.3 “乐极生悲”…...
Docker搭建Redis集群
Docker搭建Redis集群 创建一个专属redis的网络 docker network create redis --subnet 172.38.0.0/16通过shell脚本创建并启动6个redis服务 #通过脚本一次创建6个redis配置 for port in $(seq 1 6); \ do \ mkdir -p /mydata/redis/node-${port}/conf touch /mydata/redis/n…...
学习Opencv(蝴蝶书/C++)代码——2.OpenCV初探
文章目录 0. 图像读取与显示1. 视频文件读取与操作1.1 示例代码1.1 OpenCV支持的视频格式2. 加入滑动条2.1 示例代码2.2 报错/Warning2.3 关于toolbar3. 简易视频播放器3.1 OpenCV检测方向键被按下3.1.1 Windows下3.1.2 linux下3.1 方向键控制视频变化4. 简单的变换5. 写视频5.…...
基于AVR单片机的便携式心电监测设备设计与实现
基于AVR单片机的便携式心电监测设备是一种常用的医疗设备,用于随时监测和记录人体的心电信号。本文将介绍便携式心电监测设备的设计原理和实现步骤,并提供相应的代码示例。 1. 设计概述 便携式心电监测设备是一种小巧、方便携带的设备,能够…...
微机原理_14
一、单项选择题(本大题共15小题,每小题3分,共45分。在每小题给出的四个备选项中,选出一个正确的答案。) 1,下面寻址方式的操作数不在存储器中的是() A. 堆栈寻址 B. 寄存器间址 C.寄存器寻址 D. 直接寻址 2,条件转移指令JNE的条件是() A. CF…...
wordpress后台更新后 前端没变化的解决方法
使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...
地震勘探——干扰波识别、井中地震时距曲线特点
目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...
Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...
黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
