opencv-利用DeepLabV3+模型进行图像分割去除输入图像的背景
分离图像中的人物和背景通常需要一些先进的图像分割技术。GrabCut是一种常见的方法,但是对于更复杂的场景,可能需要使用深度学习模型。以下是使用深度学习模型(如人像分割模型)的示例代码:
#导入相关的库
import cv2
import numpy as np
import torch
import torchvision.transforms as T
from torchvision.models.segmentation import deeplabv3_resnet101def remove_background_with_deep_learning(image_path):# 读取图像image = cv2.imread(image_path)# 将图像转换为RGB格式image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) #将图像从BGR格式转换为RGB格式,因为深度学习模型通常使用RGB。# 定义图像预处理和转换transform = T.Compose([ #定义了图像的预处理和转换步骤,包括将图像转换为PyTorch张量和标准化。T.ToTensor(), # 将图像转换为PyTorch张量T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), # 标准化图像])# 对图像进行预处理和转换input_tensor = transform(image_rgb)input_batch = input_tensor.unsqueeze(0) # 添加一个维度,使其成为批处理的一部分# 加载预训练的DeepLabV3模型model = deeplabv3_resnet101(pretrained=True)model.eval() # 设置为评估模式,不进行梯度更新# 运行模型并获取分割掩模with torch.no_grad(): #上下文管理器,用于关闭梯度计算,以提高推断速度。output = model(input_batch)['out'][0]#运行模型并获取输出。output_predictions = output.argmax(0) # 获取模型输出中预测类别的索引# 将分割结果转换为二进制掩模mask = (output_predictions == 15).numpy() # 在DeepLabV3模型中,15是人物的标签# 将原始图像与二进制掩模相乘,去除背景result = image * mask[:, :, np.newaxis]# 显示结果cv2.imshow('Original Image', image)cv2.imshow('Removed Background', result)cv2.waitKey(0)cv2.destroyAllWindows()
# 使用示例
remove_background_with_deep_learning(r"C:\Users\mzd\Desktop\opencv\images.jpg")

代码解释:
理解代码可能需要一些基本的编程和机器学习知识,以下是逐步解释代码的主要部分:
-
导入库: 首先,导入了用于图像处理和深度学习的库,包括OpenCV(cv2)、PyTorch和TorchVision。
-
定义函数:
remove_background_with_deep_learning是一个用于去除图像背景的函数。它接受一个图像路径作为参数。 -
读取和转换图像: 使用OpenCV读取图像,然后将图像转换为RGB格式。机器学习模型通常使用RGB格式。
-
图像预处理和转换: 定义了一系列图像预处理和转换步骤,将图像转换为PyTorch张量并进行标准化。
-
加载预训练模型: 使用
deeplabv3_resnet101模型,它是一个预训练的深度学习模型,专门用于图像分割任务。 -
运行模型并获取分割掩模: 将预处理后的图像输入到模型中,获取模型输出中的分割掩模。在这里,15是代表人物的类别标签。
-
将分割结果转换为二进制掩模: 将模型输出的分割结果转换为二进制掩模,其中值为1的像素表示属于人物的区域。
-
去除背景: 将原始图像与二进制掩模相乘,实现去除背景效果。
在这个函数中,将原始图像与二进制掩模相乘的目的是将背景部分置零,从而实现去除背景的效果。这是基于掩模的思想,其中掩模是一个与原始图像大小相同的二维数组,其中元素的值为0或1,用于指示哪些像素应该保留(值为1)或去除(值为0)。
具体流程如下:
mask = (output_predictions == 15).numpy():通过模型的输出,生成一个二进制掩模。在这里,假设标签15对应于人物。掩模中值为1的像素表示人物,值为0的像素表示背景。result = image * mask[:, :, np.newaxis]:通过将原始图像与二进制掩模相乘,实现了以下效果:
- 当掩模中对应位置的值为1(人物部分),相乘结果保持原始图像的颜色值;
- 当掩模中对应位置的值为0(背景部分),相乘结果将对应位置的像素值置零。 这样,通过像素级别的相乘操作,将背景部分的像素值置零,达到了去除背景的效果。最终,
result就是去除背景后的图像。
这是一种简单而有效的背景去除方法,尤其在利用深度学习模型进行图像分割的场景中得到了广泛应用。
-
显示结果: 使用OpenCV的
imshow函数显示原始图像和去除背景后的图像。 -
使用示例: 调用
remove_background_with_deep_learning函数,传递图像路径,这里的路径是'path/to/your/image.jpg'。这是整个程序的入口。
相关文章:
opencv-利用DeepLabV3+模型进行图像分割去除输入图像的背景
分离图像中的人物和背景通常需要一些先进的图像分割技术。GrabCut是一种常见的方法,但是对于更复杂的场景,可能需要使用深度学习模型。以下是使用深度学习模型(如人像分割模型)的示例代码: #导入相关的库 import cv2 …...
中国版的 GPTs:InsCode AI 生成应用
前言 在上一篇文章 《InsCode:这可能是下一代应用开发平台?》中,我们介绍了一个新的应用开发平台 InsCode,它是基于云原生开发环境 云 IDE AI 辅助编程的一站式在线开发平台。 最近,InsCode 又推出了另一种全新的开…...
MySQL 学习笔记(刷题篇)
SQL进阶挑战 聚合分组查询 SQL123 select tag, difficulty, round((sum(score) - max(score) - min(score) ) / (count(score) - 2) ,1) as clip_avg_score from examination_info as ei, exam_record as er where ei.exam_id er.exam_id and ei.tag SQL and ei.diffi…...
windows系统如何配置yarn环境变量
启动前端项目,突然遇到报错: 原因在于没有安装yarn,或没有配置环境变量。 全局安装 yarn 可在vsCode中输入,也可在命令行输入(winR,输入cmd) npm install -g yarn添加环境变量 找到yarn的安…...
视频中的文字水印怎么去除?这三招学会轻松去视频水印
短视频与我们生活,工作息息相关,日常在在刷短视频时,下载保存后发现带有文字logo水印,如果直接拿来进行二次创作,不仅影响观看效果,平台流量还会受限制。怎么去除视频中的文字水印就成为了当下热门话题之一…...
Java项目学生管理系统二查询所有
学生管理 近年来,Java作为一门广泛应用于后端开发的编程语言,具备了广泛的应用领域和丰富的开发资源。在前几天的博客中,我们探讨了如何搭建前后端环境,为接下来的开发工作打下了坚实的基础。今天,我们将进一步扩展我…...
27.Spring如何避免在并发下获取不完整的Bean?
Spring如何避免在并发下获取不完整的Bean? 1、为什么获取不到完整的Bean? 我们知道, 如果spring容器已经加载完了, 那么肯定所有bean都是完整的了, 但如果, spring没有加载完, 在加载的过程中, 构建bean就有可能出现不完整bean的情况 2、如何解决读取到不完整bean的问题. …...
浅析SD-WAN企业组网部署中简化网络运维的关键技术
网络已经成为现代企业不可或缺的基础设施,它为企业提供了连接全球的桥梁。随着全球化和数字化转型的加速推进,企业面临着越来越多的网络挑战和压力。传统的网络组网方式往往无法满足企业规模扩大、分支机构增多、上云服务等需求,导致网络性能…...
【Rust】快速教程——自定义类型、数字转枚举、Cargo运行
前言 超过一定的年龄之后,所谓人生,无非是一个不断丧失的过程而已。宝贵的东西,会像梳子豁了齿一样从手中滑落下去。你所爱的人会一个接着一个,从身旁悄然消逝。——《1Q84》 \;\\\;\\\; 目录 前言自定义类型数字转枚举Cargo.tom…...
python 实现 AIGC 大语言模型中的概率论:生日相同问题的代码场景模拟
对深度学习本质而言,它实际上就是应用复杂的数学模型对输入数据进行建模,最后使用训练好的模型来预测或生成新的数据,因此深度学习的技术本质其实就是数学。随着大语言模型的发展,人工智能的数学本质被进一步封装,从业…...
SD-WAN组网中的CPE及云服务CPE部署方法
什么是CPE? CPE全称为Customer Premises Equipment,即客户端设备,在SD-WAN中通常为路由器,部署在中心点和分支上,提供连接和路由、协议转换、流量监控等功能。一般可分为硬件CPE和虚拟化CPE(virtual CPE&a…...
理解BatchNormalization层的作用
深度学习 文章目录 深度学习前言一、“Internal Covariate Shift”问题二、BatchNorm的本质思想三、训练阶段如何做BatchNorm四、BatchNorm的推理(Inference)过程五、BatchNorm的好处六、机器学习中mini-batch和batch有什么区别 前言 Batch Normalization作为最近一年来DL的重…...
uniapp实现文件预览过程
H5实现预览 <template><iframe :src"_url" style"width:100vw; height: 100vh;" frameborder"0"></iframe> </template> <script lang"ts"> export default {data() {return {_url: ,}},onLoad(option…...
深度学习-学习笔记记录
1、点云语义分割方法分类 分为5类:点、二维投影、体素、融合、集成 2、融合与集成的区别 融合: 概念:主要是将不同来源、类型的模型,例如深度学习、传统机器学习等,的结果或特征进行结合,以得到一个更好的模…...
程序员养生之道:延寿不忘初心——延寿必备
文章目录 每日一句正能量前言如何养生饮食篇运动篇休息篇后记 每日一句正能量 现代社会已不是大鱼吃小鱼的年代,而是快鱼吃慢鱼的年代。 前言 在IT行业中,程序员是一个重要的职业群体。由于长时间的繁重编程工作,程序员们常常忽略了身体健康…...
使用Docker安装部署Swagger Editor并远程访问编辑API文档
文章目录 Swagger Editor本地接口文档公网远程访问1. 部署Swagger Editor2. Linux安装Cpolar3. 配置Swagger Editor公网地址4. 远程访问Swagger Editor5. 固定Swagger Editor公网地址 Swagger Editor本地接口文档公网远程访问 Swagger Editor是一个用于编写OpenAPI规范的开源编…...
Nacos 2.X核心架构源码剖析
概述 注册中心并发处理,1.4.x 写时复制,2.1.0 读写分离;nacos 一般使用 AP 架构,即临时实例,1.4.x 为 http 请求,2.1.0 优化为 gRPC 协议;源码中使用了大量的事件通知机制和异步定时线程池&…...
C语言--每日选择题--Day31
第一题 1. 下面程序 i 的值为() int main() {int i 10;int j 0;if (j 0)i; elsei--; return 0; } A:11 B:9 答案及解析 B if语句中的条件判断为赋值语句的时候,因为赋值语句的返回值是右操作数; …...
chrome vue devTools安装
安装好后如下图所示: 一:下载vue devTools 下载链接https://download.csdn.net/download/weixin_44659458/13192207?spm1001.2101.3001.6661.1&utm_mediumdistribute.pc_relevant_t0.none-task-download-2%7Edefault%7ECTRLIST%7EPaid-1-13192207…...
Spring Security 6.x 系列(7)—— 源码分析之Builder设计模式
一、Builder设计模式 WebSecurity、HttpSecurity、AuthenticationManagerBuilder 都是框架中的构建者,把他们放到一起看看他们的共同特点: 查看AuthenticationManagerBuilder的继承结构图: 查看HttpSecurity的继承结构图: 查看W…...
【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...
盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
【力扣数据库知识手册笔记】索引
索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
华为OD机试-食堂供餐-二分法
import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...
让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
