Hdoop学习笔记(HDP)-Part.15 安装HIVE
目录
Part.01 关于HDP
Part.02 核心组件原理
Part.03 资源规划
Part.04 基础环境配置
Part.05 Yum源配置
Part.06 安装OracleJDK
Part.07 安装MySQL
Part.08 部署Ambari集群
Part.09 安装OpenLDAP
Part.10 创建集群
Part.11 安装Kerberos
Part.12 安装HDFS
Part.13 安装Ranger
Part.14 安装YARN+MR
Part.15 安装HIVE
Part.16 安装HBase
Part.17 安装Spark2
Part.18 安装Flink
Part.19 安装Kafka
Part.20 安装Flume
十五、安装HIVE
1.配置MetaStore
利用ambari创建的MySQL作为MetaStore,创建用户hive及数据库hive
mysql -uroot -p
CREATE DATABASE hive;
CREATE USER 'hive'@'%' IDENTIFIED BY 'lnyd@LNsy115';
GRANT ALL ON hive.* TO 'hive'@'%';
FLUSH PRIVILEGES;
2.安装
在服务中添加Hive

安装hive时需要同步安装Tez



DATABASE
Hive Database:Existing MySQL / MariaDB




安装完成后,需要按照提示将hdfs、yarn等服务进行重启。
Ambari安装后,Hive使用了Tez作为计算引擎,也可以修改为MR或Spark,在配置文件中调整,/usr/hdp/3.1.5.0-152/hive/conf/hive-site.xml
<property><name>hive.execution.engine</name><value>tez</value></property>
3.高可用
(1)MetaSore HA
ACTIONS->Add Hive Metastore


重启相关服务后完成HA启用。

(2)HiveServer2 HA
ACTIONS->Add HiveServer2


重启HIVE和Tez服务后完成HA启用。

4.Ranger授权
在Ranger上新建策略完成对租户的授权


权限策略可以精细到列
5.常用指令
(1)CLI连接
类似于mysql的命令行工具,但是只能操作本地的Hive服务,无法通过JDBC连接远程服务,且sql执行结果没有格式化,看起来不是很直观。
先用keytab登录,使用hive客户端进入
kinit -kt /etc/security/keytabs/hive.service.keytab hive/hdp01.hdp.com@HDP315.COM
hive

可以设置一些基本参数,让hive使用起来更便捷:
让提示符显示当前库
set hive.cli.print.current.db=true;
显示查询结果时显示字段名称
set hive.cli.print.header=true;
设置只对当前会话有效,重启hive会话后就失效。
创建测试数据库test_hive_db
create database test_hive_db;

查看数据库的信息
desc database test_hive_db;

从输出结果看,测试数据库test_hive_db存储在hdfs上,位置为hdfs://hdp315/warehouse/tablespace/managed/hive/test_hive_db.db
(2)Beeline连接
HiveServer2支持一个新的命令行Shell,称为:Beeline,后续将会使用Beeline替代Hive CLI。Beeline基于SQLLine CLI的JDBC客户端。Hive CLI和Beeline都属于命令行操作模式,主要区别是Hive CLI只能操作本地的Hive服务,而Beeline可以通过JDBC连接远程服务。
开启了kerberos认证的hadoop集群,hive默认使用kerberos认证。先以hive/hdp01.hdp.com@HDP315.COM身份登录,创建数据库hive_db_tenant1和tenant2、表hive_table_tenant1和hive_table_tenant2,在ranger上分别将两个租户赋权到对应的数据库上,然后以tenant1身份连接,分别尝试连接两个数据库,看是否有权限访问
kinit -kt /etc/security/keytabs/hive.service.keytab hive/hdp01.hdp.com@HDP315.COM
beeline -u 'jdbc:hive2://hdp01.hdp.com:2181,hdp02.hdp.com:2181,hdp03.hdp.com:2181/;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=hiveserver2;principal=hive/hdp01.hdp.com@HDP315.COM'
create database hive_db_tenant1;
create database hive_db_tenant2;
create table hive_db_tenant1.hive_table_tenant1 (id int,name string,address string,phone string);
create table hive_db_tenant2.hive_table_tenant2 (id int,name string,address string,phone string);
kdestroy
kinit -kt /root/keytab/tenant1.keytab tenant1
beeline -u 'jdbc:hive2://hdp01.hdp.com:2181,hdp02.hdp.com:2181,hdp03.hdp.com:2181/;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=hiveserver2;principal=hive/hdp01.hdp.com@HDP315.COM'
describe hive_db_tenant1.hive_table_tenant1;
describe hive_db_tenant2.hive_table_tenant2;

从结果看,无法访问hive_table_tenant2的表。
(3)导入数据等测试
生成6GB大小的文件
#!/bin/bash
cat /dev/null > /root/bigFile.txt
for((i=1;i<=100000000;i++));
doecho "$i,testname$i,testaddress$i,testphonenumber$i" >> /root/bigFile.txt;
done
本次测试使用tenant1
kinit -kt /root/keytab/tenant1.keytab tenant1
hdfs dfs -put /root/bigFile.txt /testhdfs/tenant1
beeline -u 'jdbc:hive2://hdp01.hdp.com:2181,hdp02.hdp.com:2181,hdp03.hdp.com:2181/;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=hiveserver2;principal=hive/hdp01.hdp.com@HDP315.COM'
set tez.queue.name=tenant1;
① 导入测试
测试一次性导入和切分导入的性能
新建表,用于一次性导入
CREATE TABLE `test_tenant1_one`(
`id` int,
`name` string,
`address` string,
`phone` string
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
STORED AS TEXTFILE
LOCATION 'hdfs://hdp315/testhdfs/tenant1/test_tenant1_one.db';
执行导入
LOAD DATA INPATH 'hdfs://hdp315/testhdfs/tenant1/bigFile.txt' INTO TABLE hive_db_tenant1.test_tenant1_one;

新建表,用于分桶导入,分桶的实质就是对分桶的字段做了hash,然后存放到对应文件中,所以说如果原有数据没有按key hash,需要在插入分桶的时候hash,也就是说向分桶表中插入数据的时候必然要执行一次MAPREDUCE,这也就是分桶表的数据基本只能通过从结果集查询插入的方式进行导入
CREATE TABLE `test_tenant1_bucket`(
`id` int,
`name` string,
`address` string,
`phone` string
)
CLUSTERED BY(id) INTO 16 buckets
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
STORED AS TEXTFILE
LOCATION 'hdfs://hdp315/testhdfs/tenant1/test_tenant1_bucket.db';
执行导入
INSERT OVERWRITE TABLE test_tenant1_bucket SELECT * FROM test_tenant1_one;

此时,分桶后的文件会分成16个分片

② 查询测试
对测试的数据库进行查询操作
SELECT SUM(id) FROM hive_db_tenant1.test_tenant1_bucket;

6.常见报错
(1)提示没有权限调用default队列
Select查询不报错,但count、insert、load等操作需要调用tez引擎时会报错
报错信息:
ERROR : Job Submission failed with exception 'java.io.IOException(org.apache.hadoop.yarn.exceptions.YarnException: org.apache.hadoop.security.AccessControlException: User hive does not have permission to submit application_1678378182198_0002 to queue default

默认调用的是default队列,需要手工指定使用的队列
mr指定队列:
set mapreduce.job.queuename=tenant1;
tez指定队列:
set tez.queue.name=tenant1;
相关文章:
Hdoop学习笔记(HDP)-Part.15 安装HIVE
目录 Part.01 关于HDP Part.02 核心组件原理 Part.03 资源规划 Part.04 基础环境配置 Part.05 Yum源配置 Part.06 安装OracleJDK Part.07 安装MySQL Part.08 部署Ambari集群 Part.09 安装OpenLDAP Part.10 创建集群 Part.11 安装Kerberos Part.12 安装HDFS Part.13 安装Ranger …...
vue3+element-plus之el-date-picker日期选择器清空无回调的解决方案
MENU 前言解决htmlJavaScrip 前言 在一个任务列表的搜索栏,添加一个日期区间搜索。使用到element-plus中的日期选择器el-date-picker;el-date-picker本身方法中有change事件,但是清空按钮没有对应回调方法。在任务列表的搜索需求中࿰…...
【虚拟机】Docker基础 【二】
2.2.数据卷 容器是隔离环境,容器内程序的文件、配置、运行时产生的容器都在容器内部,我们要读写容器内的文件非常不方便。大家思考几个问题: 如果要升级MySQL版本,需要销毁旧容器,那么数据岂不是跟着被销毁了&#x…...
CSS 绝对定位问题和粘性定位介绍
目录 1,绝对定位问题1,绝对定位元素的特性2,初始包含块问题 2,粘性定位注意点: 1,绝对定位问题 1,绝对定位元素的特性 display 默认为 block。所以行内元素设置绝对定位后可直接设置宽高。脱离…...
matlab 计算两点云之间的放缩倍数
目录 一、算法原理1、原理概述2、参考文献二、代码实现三、结果展示本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT。 一、算法原理 1、原理概述 放缩倍数即尺度参数,尺度参数可由2个公共点在不同坐标系下的距离之…...
MySQL-数据库设计与实现
目录 第1关:从概念模型到MySQL实现 第2关:从需求分析到逻辑模型 第3关:建模工具的使用 第1关:从概念模型到MySQL实现 任务描述 将已建好的概念模型,变成MySQL物理实现。 # 请将你实现flight_booking数据库的语句写…...
后端返回图片流前端展示图片
根据后端返回的图片流格式,选用合适方法转换 下面以base64为例 if(res.status 200) {res.data.data.forEach((item,index) > {let Array data:image/png;base64, itemlet blob this.base64toBlob(Array)let url URL.createObjectURL(blob)this.imageList.p…...
解决 from . import _imaging as core ImportError: DLL load failed: 找不到指定的模块。
升级pillow版本就完事了 卸载掉之前的旧版本 conda uninstall pillow升级到新的版本就解决了 pip uninstall pillow 那个错误就解决了...
springBoot3.2 + jdk21 + GraalVM上手体验
springBoot3.2 jdk21 GraalVM上手体验 SpringBoot2.x官方已经停止维护了,jdk8这次真的得换了🤣 可以参考官方文章进行体验:https://spring.io/blog/2023/09/09/all-together-now-spring-boot-3-2-graalvm-native-images-java-21-and-virt…...
Python float(input())的用法,web中的应用
float(input()) 要理解Python中的float(input()),可以分两部分。第一,input()用于获取键盘上的输入,该函数的返回值是一个Python字符串str类型的数据——不过输入的是什么;第二,float()函数用于将传递的参数——这里就…...
uniapp是否可以用elementUI等前端UI库、使用步骤以及需要注意的问题
文章目录 uniapp是否可以用elementUI等前端UI库使用方法和步骤问题如何解决 uniapp是否可以用elementUI等前端UI库 在PC端开发uniapp,可以用elementUI,因为elementUI就是PC端的。 在使用uniapp,选择vue2.0时,实测可以用nodejs16的…...
在vue中如何书写 SSR 友好的代码
文章目录 前言服务端的响应性组件生命周期钩子访问平台特有 API跨请求状态污染激活不匹配自定义指令teleports后言 前言 hello world欢迎来到前端的新世界 😜当前文章系列专栏:vue.js 🐱👓博主在前端领域还有很多…...
开源与闭源:数字时代大模型之辩
欢迎大家到我的博客浏览更多文章。YinKais Blog | YinKais Blog 大模型的未来:开源与闭源的博弈 在大模型的发展中,开源和闭源两种截然不同的开发模式发挥着重要的作用。开源以其技术共享的特性,吸引了大量人才参与,推动了大模型的…...
卷积神经网络(VGG-16)猫狗识别
文章目录 一、前言二、前期工作1. 设置GPU(如果使用的是CPU可以忽略这步)2. 导入数据3. 查看数据 二、数据预处理1. 加载数据2. 再次检查数据3. 配置数据集4. 可视化数据 三、构建VG-16网络四、编译五、训练模型六、模型评估七、保存and加载模型八、预测…...
Mysql 行转列,把逗号分隔的字段拆分成多行
目录 效果如下源数据变更后的数据 方法第一种示例SQL和业务结合在一起使用 第二种示例SQL和业务结合在一起使用 结论 效果如下 源数据 变更后的数据 方法 第一种 先执行下面的SQL,看不看能不能执行,如果有结果,代表数据库版本是可以的&…...
基于单片机设计的智能水泵控制器
一、前言 在一些场景中,如水池、水箱等水体容器的管理中,保持水位的稳定是至关重要的。传统上,人们通常需要手动监测水位并进行水泵的启停控制,这种方式不仅效率低下,还可能导致水位过高或过低,从而对水体…...
反转链表的实现
题目描述: 给出一个链表的头节点,将其反转,并返回新的头节点 思路1:反转地址 将每个节点里的地址由指向下一个节点变为指向前一个节点 定义三个结构体指针n1,n2,n3,n1表示改后指针的地址,n2表示要修改结构体里next的…...
python之pyqt专栏6-信号与槽2
上一篇python之pyqt专栏5-信号与槽1-CSDN博客,我们通过信号与槽实现了点击Button,改变Label的文本内容。可以知道 信号是在类中定义的,是类的属性 槽函数是信号通过connect连接的任意成员函数,当信号发生时,执行与信号…...
C语言中一些特殊字符的输出
目录 %的介绍 斜杠与反斜杠 转义字符 %的介绍 int a1; 1、printf(’’%d’’,a);//输出1 2、printf(’’%%d’’,a);//输出%d 3、printf(’’%%%d ‘’,a)//输出%1 C语言中,%也是转义符,%%相当于% 斜杠与反斜杠 首先需要明白…...
Opencv制作电子签名(涉及知识点:像素过滤,图片通用resize函数,像素大于某个阈值则赋值为其它的像素值)
import cv2def resize_by_ratio(image, widthNone, heightNone, intercv2.INTER_AREA):img_new_size None(h, w) image.shape[:2] # 获得高度和宽度if width is None and height is None: # 如果输入的宽度和高度都为空return image # 直接返回原图if width is None:h_ratio …...
使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...
MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...
深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...
页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...
使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装
以下是基于 vant-ui(适配 Vue2 版本 )实现截图中照片上传预览、删除功能,并封装成可复用组件的完整代码,包含样式和逻辑实现,可直接在 Vue2 项目中使用: 1. 封装的图片上传组件 ImageUploader.vue <te…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
