当前位置: 首页 > news >正文

神经网络 模型表示(一)

神经网络 模型表示

模型表示一

为了构建神经网络模型,我们需要首先思考大脑中的神经网络是怎样的?每一个神经元都可以被认为是一个处理单元/神经核(processing unit/Nucleus),它含有许多输入/树突(input/Dendrite),并且有一个输出/轴突(output/Axon)。神经网络是大量神经元相互链接并通过电脉冲来交流的一个网络。

在这里插入图片描述

下面是一组神经元的示意图,神经元利用微弱的电流进行沟通。这些弱电流也称作动作电位,其实就是一些微弱的电流。所以如果神经元想要传递一个消息,它就会就通过它的轴突,发送一段微弱电流给其他神经元,这就是轴突。

这里是一条连接到输入神经,或者连接另一个神经元树突的神经,接下来这个神经元接收这条消息,做一些计算,它有可能会反过来将在轴突上的自己的消息传给其他神经元。这就是所有人类思考的模型:我们的神经元把自己的收到的消息进行计算,并向其他神经元传递消息。这也是我们的感觉和肌肉运转的原理。如果你想活动一块肌肉,就会触发一个神经元给你的肌肉发送脉冲,并引起你的肌肉收缩。如果一些感官:比如说眼睛想要给大脑传递一个消息,那么它就像这样发送电脉冲给大脑的。

神经网络模型建立在很多神经元之上,每一个神经元又是一个个学习模型。这些神经元(也叫激活单元,activation unit)采纳一些特征作为输出,并且根据本身的模型提供一个输出。下图是一个以逻辑回归模型作为自身学习模型的神经元示例,在神经网络中,参数又可被成为权重(weight)。

在这里插入图片描述

我们设计出了类似于神经元的神经网络,效果如下:

其中 x 1 x_1 x1, x 2 x_2 x2, x 3 x_3 x3是输入单元(input units),我们将原始数据输入给它们。
a 1 a_1 a1, a 2 a_2 a2, a 3 a_3 a3是中间单元,它们负责将数据进行处理,然后呈递到下一层。
最后是输出单元,它负责计算 h θ ( x ) {h_\theta}\left( x \right) hθ(x)

神经网络模型是许多逻辑单元按照不同层级组织起来的网络,每一层的输出变量都是下一层的输入变量。下图为一个3层的神经网络,第一层成为输入层(Input Layer),最后一层称为输出层(Output Layer),中间一层成为隐藏层(Hidden Layers)。我们为每一层都增加一个偏差单位(bias unit

下面引入一些标记法来帮助描述模型:
a i ( j ) a_{i}^{\left( j \right)} ai(j) 代表第 j j j 层的第 i i i 个激活单元。 θ ( j ) {{\theta }^{\left( j \right)}} θ(j)代表从第 j j j 层映射到第$ j+1$ 层时的权重的矩阵,例如 θ ( 1 ) {{\theta }^{\left( 1 \right)}} θ(1)代表从第一层映射到第二层的权重的矩阵。其尺寸为:以第 j + 1 j+1 j+1层的激活单元数量为行数,以第 j j j 层的激活单元数加一为列数的矩阵。例如:上图所示的神经网络中 θ ( 1 ) {{\theta }^{\left( 1 \right)}} θ(1)的尺寸为 3*4。
在这里插入图片描述

对于上图所示的模型,激活单元和输出分别表达为:

a 1 ( 2 ) = g ( Θ 10 ( 1 ) x 0 + Θ 11 ( 1 ) x 1 + Θ 12 ( 1 ) x 2 + Θ 13 ( 1 ) x 3 ) a_{1}^{(2)}=g(\Theta _{10}^{(1)}{{x}_{0}}+\Theta _{11}^{(1)}{{x}_{1}}+\Theta _{12}^{(1)}{{x}_{2}}+\Theta _{13}^{(1)}{{x}_{3}}) a1(2)=g(Θ10(1)x0+Θ11(1)x1+Θ12(1)x2+Θ13(1)x3)
a 2 ( 2 ) = g ( Θ 20 ( 1 ) x 0 + Θ 21 ( 1 ) x 1 + Θ 22 ( 1 ) x 2 + Θ 23 ( 1 ) x 3 ) a_{2}^{(2)}=g(\Theta _{20}^{(1)}{{x}_{0}}+\Theta _{21}^{(1)}{{x}_{1}}+\Theta _{22}^{(1)}{{x}_{2}}+\Theta _{23}^{(1)}{{x}_{3}}) a2(2)=g(Θ20(1)x0+Θ21(1)x1+Θ22(1)x2+Θ23(1)x3)
a 3 ( 2 ) = g ( Θ 30 ( 1 ) x 0 + Θ 31 ( 1 ) x 1 + Θ 32 ( 1 ) x 2 + Θ 33 ( 1 ) x 3 ) a_{3}^{(2)}=g(\Theta _{30}^{(1)}{{x}_{0}}+\Theta _{31}^{(1)}{{x}_{1}}+\Theta _{32}^{(1)}{{x}_{2}}+\Theta _{33}^{(1)}{{x}_{3}}) a3(2)=g(Θ30(1)x0+Θ31(1)x1+Θ32(1)x2+Θ33(1)x3)
h Θ ( x ) = g ( Θ 10 ( 2 ) a 0 ( 2 ) + Θ 11 ( 2 ) a 1 ( 2 ) + Θ 12 ( 2 ) a 2 ( 2 ) + Θ 13 ( 2 ) a 3 ( 2 ) ) {{h}_{\Theta }}(x)=g(\Theta _{10}^{(2)}a_{0}^{(2)}+\Theta _{11}^{(2)}a_{1}^{(2)}+\Theta _{12}^{(2)}a_{2}^{(2)}+\Theta _{13}^{(2)}a_{3}^{(2)}) hΘ(x)=g(Θ10(2)a0(2)+Θ11(2)a1(2)+Θ12(2)a2(2)+Θ13(2)a3(2))

上面进行的讨论中只是将特征矩阵中的一行(一个训练实例)喂给了神经网络,我们需要将整个训练集都喂给我们的神经网络算法来学习模型。

我们可以知道:每一个 a a a都是由上一层所有的 x x x和每一个 x x x所对应的决定的。

(我们把这样从左到右的算法称为前向传播算法( FORWARD PROPAGATION ))

x x x, θ \theta θ, a a a 分别用矩阵表示:
在这里插入图片描述

我们可以得到 θ ⋅ X = a \theta \cdot X=a θX=a

相关文章:

神经网络 模型表示(一)

神经网络 模型表示 模型表示一 为了构建神经网络模型,我们需要首先思考大脑中的神经网络是怎样的?每一个神经元都可以被认为是一个处理单元/神经核(processing unit/Nucleus),它含有许多输入/树突(input/…...

【漏洞复现】智跃人力资源管理系统GenerateEntityFromTable.aspx接口存在SQL注入漏洞 附POC

漏洞描述 智跃人力资源管理系统是基于B/S网页端广域网平台,一套考勤系统即可对全国各地多个分公司进行统一管控,成本更低。信息共享更快。跨平台,跨电子设备。智跃人力资源管理系统GenerateEntityFromTable.aspx接口处存在SQL注入漏洞,攻击者可通过该漏洞获取数据库中的信…...

【matlab程序】画海洋流场

【matlab程序】画海洋流场 clear;clc; file ( ‘0227.nc’); latncread(file,‘latitude’); lonncread(file,‘longitude’); uncread(file,‘water_u’); vncread(file,‘water_v’); [x,y]meshgrid(lon,lat); xx’; yy’; interval4; figure (1) set(gcf,‘color’,[1 1 1…...

线性表 力扣67. 二进制求和

题目 67. 二进制求和 翻译 主要思路 核心思路是像竖式计算一样,不过需要将字符串a和b反转后逐位进行二进制计算得到字符串c,最后再将c反转就是答案 逐位计算的时候利用count,在将a和b当前位置数字相加后通过模2来决定字符串c对应位置的数…...

2312skia,13画布包入门

画矶包快速入门 CanvasKit是用比canvasAPI更高级功能集的Skia来绘画元素到canvas中的wasm模块. 最小应用 此例是个最小Canvaskit应用,它为一帧绘画一个圆角矩形.从unpkg.com中提取wasm二进制文件,但你也可自己构建和管理它. <canvas idfoo width300 height300></c…...

【网络安全技术】消息认证技术

一、哈希函数 1.安全性质 1&#xff09;抗第一原像攻击&#xff08;Preimage Resistance&#xff09; 给定哈希后的值&#xff0c;很难找到哈希前的原消息。这很好理解&#xff0c;需要哈希函数具有单向性。 一个简单的例子就是密码存储系统&#xff0c;用户登录服务器需要…...

智慧安防三大信息技术:云计算、大数据及人工智能在视频监控EasyCVR中的应用

说到三大信息技术大家都很清楚&#xff0c;指的是云计算、大数据和人工智能&#xff0c;在人工智能&#xff08;AI&#xff09;快速发展的当下&#xff0c;例如常见的大数据分析、人工智能芯片生产的智能机器人等等&#xff0c;在工作、生活、教育、金融、科技、工业、农业、娱…...

接口测试基础知识

一、接口测试简介 什么是接口测试&#xff1f; 接口测试是测试系统组件间接口的一种测试&#xff0c;主要用于检测外部系统与系统之间以及内部各个子系统之间的交互点。 测试的重点&#xff1a; 检查数据的交换&#xff0c;传递和控制管理过程&#xff1b;检查系统间的相互…...

C++多线程之通过成员函数作为线程入口

说明&#xff1a; 通过类里面的函数作为线程入口&#xff0c;我个人难理解的地方在于给线程传递参数的时候&#xff0c;怎么找到Main函数。后面会做分析。 首先创建类&#xff1a;创建MyThread类&#xff0c;其中公有函数Main作为入口。这个类的传教比较简单&#xff0c;成员…...

word、excel文件转PDF(documents4j方式,简单)

1 documents4j方式 引入pom <dependency><groupId>com.documents4j</groupId><artifactId>documents4j-local</artifactId><version>1.1.12</version></dependency><dependency><groupId>com.documents4j</g…...

【Linux】:信号(三)捕捉

信号捕捉 一.sigaction1.基本使用2.sa_mask字段 二.可重入函数三.volatile四.SIGCHLD信号 承接上文 果信号的处理动作是用户自定义函数,在信号递达时就调用这个函数,这称为捕捉信号。由于信号处理函数的代码是在用户空间的,处理过程比较复杂,举例如下: 用户程序注册了SIGQUIT信…...

数据结构 / 队列 / 循环队列 / 概念

1. 定义 为充分利用向量空间&#xff0c;克服假溢出现象的方法是&#xff1a;将向量空间想象为一个首尾相接的圆环&#xff0c;并称这种向量为循环向量。存储在其中的队列称为循环队列&#xff08;Circular Queue&#xff09;。循环队列是把顺序队列首尾相连&#xff0c;把存储…...

elasticsearch 内网下如何以离线的方式上传任意的huggingFace上的NLP模型(国内闭坑指南)

es自2020年的8.x版本以来&#xff0c;就提供了机器学习的能力。我们可以使用es官方提供的工具eland&#xff0c;将hugging face上的NLP模型&#xff0c;上传到es集群中。利用es的机器学习模块&#xff0c;来运维部署管理模型。配合es的管道处理&#xff0c;来更加便捷的处理数据…...

vue中中的动画组件使用及如何在vue中使用animate.css

“< Transition >” 是一个内置组件&#xff0c;这意味着它在任意别的组件中都可以被使用&#xff0c;无需注册。它可以将进入和离开动画应用到通过默认插槽传递给它的元素或组件上。进入或离开可以由以下的条件之一触发&#xff1a; 由 v-if 所触发的切换由 v-show 所触…...

MATLAB 模型参考自适应控制 - Model Reference Adaptive Control

系列文章目录 文章目录 系列文章目录前言一、参考模型二、扰动与不确定性模型三、直接 MRAC名义模型参数更新间接 MRAC估计器模型和控制器增益参数更新学习修正参考文献 前言 模型参考自适应控制模块计算控制动作&#xff0c;使不确定的受控系统跟踪给定参考被控对象模型的行为…...

【如何用批处理文件实现自动编译Keil工程和C# Visual Studio工程】

如何用批处理文件实现自动编译Keil工程和C# Visual Studio工程 写个Bat 批处理文件&#xff0c;现自动编译Keil工程和C# Visual Studio工程。这样可以结合Python 实现复杂的操作。 编译Keil工程&#xff1a; echo off set UVC:\Keil_v5\UV4\UV4.exe set UV_PRO_PATHD:\worksp…...

大模型的实践应用11-“书生”通用大模型的搭建与模型代码详细介绍,以及快速使用方法

大家好,我是微学AI,今天给大家介绍一下大模型的实践应用11-“书生”通用大模型的搭建与模型代码详细介绍,以及快速使用方法。“书生” 通用大模型是上海人工智能实验室研制的大模型,并且已经开源了“书生浦语”大模型70亿参数的轻量级版本InternLM-7B。InternLM-7B模型主要…...

【开发PaaS】基于Postgresql的开发平台Supabase

Supadase是开源的。我们选择可扩展的开源工具&#xff0c;使其易于使用。 Supadase不是Firebase的1对1映射。虽然我们正在构建Firebase提供的许多功能&#xff0c;但我们不会以同样的方式进行&#xff1a; 我们的技术选择大不相同&#xff1b;我们使用的一切都是开源的&#…...

前端开启gzip优化页面加载速度

生成gizp的打包资源&#xff0c;可以优化页面加载速度 打包的时候开启gzip可以很大程度减少包的大小&#xff0c;页面大小可以变为原来的30%甚至更小,非常适合线上部署, 但还记得需要服务端支持 1、前端配置compression-webpack-plugin 先安装&#xff1a;npm install compres…...

用Java写一个俄罗斯方块

目录 游戏规则 小方块类&#xff1a;Cell 七种图形类&#xff1a;I、J、L、O、S、T、Z J L O S T Z 俄罗斯方块游戏主类&#xff1a;Tetris 效果展示 游戏规则 由小方块组成的不同形状的板块陆续从屏幕上方落下来&#xff0c;玩家通过调整板块的位置和方向&#xff0c;使它…...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持&#xff0c;都是在为未来积攒底气。 案例&#xff1a;OLED显示一个A 这边观察到一个点&#xff0c;怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 &#xff1a; 如果代码里信号切换太快&#xff08;比如 SDA 刚变&#xff0c;SCL 立刻变&#…...

LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》

这段 Python 代码是一个完整的 知识库数据库操作模块&#xff0c;用于对本地知识库系统中的知识库进行增删改查&#xff08;CRUD&#xff09;操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 &#x1f4d8; 一、整体功能概述 该模块…...

PostgreSQL——环境搭建

一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在&#xff0…...

从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障

关键领域软件测试的"安全密码"&#xff1a;Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力&#xff0c;从金融交易到交通管控&#xff0c;这些关乎国计民生的关键领域…...

uniapp 小程序 学习(一)

利用Hbuilder 创建项目 运行到内置浏览器看效果 下载微信小程序 安装到Hbuilder 下载地址 &#xff1a;开发者工具默认安装 设置服务端口号 在Hbuilder中设置微信小程序 配置 找到运行设置&#xff0c;将微信开发者工具放入到Hbuilder中&#xff0c; 打开后出现 如下 bug 解…...

水泥厂自动化升级利器:Devicenet转Modbus rtu协议转换网关

在水泥厂的生产流程中&#xff0c;工业自动化网关起着至关重要的作用&#xff0c;尤其是JH-DVN-RTU疆鸿智能Devicenet转Modbus rtu协议转换网关&#xff0c;为水泥厂实现高效生产与精准控制提供了有力支持。 水泥厂设备众多&#xff0c;其中不少设备采用Devicenet协议。Devicen…...

Mysql故障排插与环境优化

前置知识点 最上层是一些客户端和连接服务&#xff0c;包含本 sock 通信和大多数jiyukehuduan/服务端工具实现的TCP/IP通信。主要完成一些简介处理、授权认证、及相关的安全方案等。在该层上引入了线程池的概念&#xff0c;为通过安全认证接入的客户端提供线程。同样在该层上可…...